This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnncl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnncl.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgneg.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | mulgnegneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnncl.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgneg.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | 1 2 3 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 5 | 4 | fveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) |
| 6 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) | |
| 7 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 8 | 1 3 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · 𝑋 ) ) |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · 𝑋 ) ) |
| 10 | 5 9 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |