This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mulgaddcom . (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgaddcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgaddcom.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgaddcom.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulgaddcomlem | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgaddcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgaddcom.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgaddcom.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) | |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → 𝐺 ∈ Grp ) |
| 6 | simp3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 8 | znegcl | ⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) | |
| 9 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 10 | 8 9 | syl3an2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 12 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 13 | 1 12 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 16 | 1 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( - 𝑦 · 𝑋 ) ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) ) → ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 𝑋 + ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) ) |
| 17 | 5 7 11 15 16 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 𝑋 + ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) ) |
| 18 | 1 2 12 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 21 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 23 | 1 3 12 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 24 | 5 7 22 23 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 25 | 19 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 26 | 1 3 12 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 27 | 5 22 7 26 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 28 | fveq2 | ⊢ ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) | |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) |
| 30 | 25 27 29 | 3eqtr2rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) |
| 31 | 20 24 30 | 3eqtr2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) ) |
| 33 | 1 3 12 | grpasscan1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) = ( - 𝑦 · 𝑋 ) ) |
| 34 | 5 7 11 33 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) = ( - 𝑦 · 𝑋 ) ) |
| 35 | 17 32 34 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( - 𝑦 · 𝑋 ) ) |
| 36 | 35 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( ( - 𝑦 · 𝑋 ) + 𝑋 ) ) |
| 37 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) → ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ) |
| 38 | 4 6 10 37 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ) |
| 40 | 1 3 12 | grpasscan2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
| 41 | 5 39 7 40 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
| 42 | 36 41 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |