This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system whose closure operator has the exchange property, if S is independent and contained in the closure of T , and either S or T is finite, then T dominates S . This is an immediate consequence of mreexexd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexdomd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| mreexdomd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| mreexdomd.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| mreexdomd.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | ||
| mreexdomd.5 | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑇 ) ) | ||
| mreexdomd.6 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) | ||
| mreexdomd.7 | ⊢ ( 𝜑 → ( 𝑆 ∈ Fin ∨ 𝑇 ∈ Fin ) ) | ||
| mreexdomd.8 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | ||
| Assertion | mreexdomd | ⊢ ( 𝜑 → 𝑆 ≼ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexdomd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | mreexdomd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | mreexdomd.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | mreexdomd.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | |
| 5 | mreexdomd.5 | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑇 ) ) | |
| 6 | mreexdomd.6 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) | |
| 7 | mreexdomd.7 | ⊢ ( 𝜑 → ( 𝑆 ∈ Fin ∨ 𝑇 ∈ Fin ) ) | |
| 8 | mreexdomd.8 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | |
| 9 | 3 1 8 | mrissd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 10 | dif0 | ⊢ ( 𝑋 ∖ ∅ ) = 𝑋 | |
| 11 | 9 10 | sseqtrrdi | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑋 ∖ ∅ ) ) |
| 12 | 6 10 | sseqtrrdi | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑋 ∖ ∅ ) ) |
| 13 | un0 | ⊢ ( 𝑇 ∪ ∅ ) = 𝑇 | |
| 14 | 13 | fveq2i | ⊢ ( 𝑁 ‘ ( 𝑇 ∪ ∅ ) ) = ( 𝑁 ‘ 𝑇 ) |
| 15 | 5 14 | sseqtrrdi | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ ∅ ) ) ) |
| 16 | un0 | ⊢ ( 𝑆 ∪ ∅ ) = 𝑆 | |
| 17 | 16 8 | eqeltrid | ⊢ ( 𝜑 → ( 𝑆 ∪ ∅ ) ∈ 𝐼 ) |
| 18 | 1 2 3 4 11 12 15 17 7 | mreexexd | ⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝒫 𝑇 ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) |
| 19 | simprrl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑆 ≈ 𝑖 ) | |
| 20 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑖 ∈ 𝒫 𝑇 ) | |
| 21 | 20 | elpwid | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑖 ⊆ 𝑇 ) |
| 22 | 1 | elfvexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 23 | 22 6 | ssexd | ⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 24 | ssdomg | ⊢ ( 𝑇 ∈ V → ( 𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇 ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → ( 𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → ( 𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇 ) ) |
| 27 | 21 26 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑖 ≼ 𝑇 ) |
| 28 | endomtr | ⊢ ( ( 𝑆 ≈ 𝑖 ∧ 𝑖 ≼ 𝑇 ) → 𝑆 ≼ 𝑇 ) | |
| 29 | 19 27 28 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑆 ≼ 𝑇 ) |
| 30 | 18 29 | rexlimddv | ⊢ ( 𝜑 → 𝑆 ≼ 𝑇 ) |