This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | topclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| Assertion | topclat | ⊢ ( 𝐽 ∈ Top → 𝐼 ∈ CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| 2 | 1 | ipobas | ⊢ ( 𝐽 ∈ Top → 𝐽 = ( Base ‘ 𝐼 ) ) |
| 3 | eqidd | ⊢ ( 𝐽 ∈ Top → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) ) | |
| 4 | eqidd | ⊢ ( 𝐽 ∈ Top → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) ) | |
| 5 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 6 | 5 | a1i | ⊢ ( 𝐽 ∈ Top → 𝐼 ∈ Poset ) |
| 7 | uniopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ∪ 𝑥 ∈ 𝐽 ) | |
| 8 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → 𝐽 ∈ Top ) | |
| 9 | simpr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → 𝑥 ⊆ 𝐽 ) | |
| 10 | eqidd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) ) | |
| 11 | intmin | ⊢ ( ∪ 𝑥 ∈ 𝐽 → ∩ { 𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦 } = ∪ 𝑥 ) | |
| 12 | 11 | eqcomd | ⊢ ( ∪ 𝑥 ∈ 𝐽 → ∪ 𝑥 = ∩ { 𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦 } ) |
| 13 | 7 12 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ∪ 𝑥 = ∩ { 𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦 } ) |
| 14 | 1 8 9 10 13 | ipolubdm | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ( 𝑥 ∈ dom ( lub ‘ 𝐼 ) ↔ ∪ 𝑥 ∈ 𝐽 ) ) |
| 15 | 7 14 | mpbird | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → 𝑥 ∈ dom ( lub ‘ 𝐼 ) ) |
| 16 | ssrab2 | ⊢ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ⊆ 𝐽 | |
| 17 | uniopn | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ⊆ 𝐽 ) → ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐽 ) | |
| 18 | 8 16 17 | sylancl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐽 ) |
| 19 | eqidd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) ) | |
| 20 | eqidd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ) | |
| 21 | 1 8 9 19 20 | ipoglbdm | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ( 𝑥 ∈ dom ( glb ‘ 𝐼 ) ↔ ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐽 ) ) |
| 22 | 18 21 | mpbird | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → 𝑥 ∈ dom ( glb ‘ 𝐼 ) ) |
| 23 | 2 3 4 6 15 22 | isclatd | ⊢ ( 𝐽 ∈ Top → 𝐼 ∈ CLat ) |