This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipolub.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| ipolub.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| ipolub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) | ||
| ipolub.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) | ||
| ipolubdm.t | ⊢ ( 𝜑 → 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) | ||
| Assertion | ipolubdm | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | ipolub.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 3 | ipolub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) | |
| 4 | ipolub.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) | |
| 5 | ipolubdm.t | ⊢ ( 𝜑 → 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) | |
| 6 | 1 | ipobas | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 8 | eqidd | ⊢ ( 𝜑 → ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) ) | |
| 9 | eqid | ⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) | |
| 10 | 1 2 3 9 | ipolublem | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) → ( ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 → 𝑡 ( le ‘ 𝐼 ) 𝑧 ) ) ) ) |
| 11 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
| 13 | 7 8 4 10 12 | lubeldm2d | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ( 𝑆 ⊆ 𝐹 ∧ ∃ 𝑡 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) ) ) |
| 14 | 3 13 | mpbirand | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ∃ 𝑡 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) ) |
| 15 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
| 16 | intubeu | ⊢ ( 𝑡 ∈ 𝐹 → ( ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ↔ 𝑡 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) ) | |
| 17 | 16 | biimpa | ⊢ ( ( 𝑡 ∈ 𝐹 ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑡 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
| 18 | 17 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑡 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
| 19 | 15 18 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑇 = 𝑡 ) |
| 20 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑡 ∈ 𝐹 ) | |
| 21 | 19 20 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑇 ∈ 𝐹 ) |
| 22 | 21 | ex | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) → ( ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) → 𝑇 ∈ 𝐹 ) ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → 𝑇 ∈ 𝐹 ) | |
| 24 | intubeu | ⊢ ( 𝑇 ∈ 𝐹 → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ↔ 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) ) | |
| 25 | 24 | biimparc | ⊢ ( ( 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ∧ 𝑇 ∈ 𝐹 ) → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) |
| 26 | 5 25 | sylan | ⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) |
| 27 | sseq2 | ⊢ ( 𝑡 = 𝑇 → ( ∪ 𝑆 ⊆ 𝑡 ↔ ∪ 𝑆 ⊆ 𝑇 ) ) | |
| 28 | sseq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ⊆ 𝑧 ↔ 𝑇 ⊆ 𝑧 ) ) | |
| 29 | 28 | imbi2d | ⊢ ( 𝑡 = 𝑇 → ( ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ↔ ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) |
| 30 | 29 | ralbidv | ⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) |
| 31 | 27 30 | anbi12d | ⊢ ( 𝑡 = 𝑇 → ( ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ↔ ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) ) |
| 32 | 22 23 26 31 | rspceb2dv | ⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ↔ 𝑇 ∈ 𝐹 ) ) |
| 33 | 14 32 | bitrd | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹 ) ) |