This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mreclatGOOD.i | |- I = ( toInc ` C ) |
|
| Assertion | mreclat | |- ( C e. ( Moore ` X ) -> I e. CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclatGOOD.i | |- I = ( toInc ` C ) |
|
| 2 | 1 | ipobas | |- ( C e. ( Moore ` X ) -> C = ( Base ` I ) ) |
| 3 | eqidd | |- ( C e. ( Moore ` X ) -> ( lub ` I ) = ( lub ` I ) ) |
|
| 4 | eqidd | |- ( C e. ( Moore ` X ) -> ( glb ` I ) = ( glb ` I ) ) |
|
| 5 | 1 | ipopos | |- I e. Poset |
| 6 | 5 | a1i | |- ( C e. ( Moore ` X ) -> I e. Poset ) |
| 7 | mreuniss | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. x C_ X ) |
|
| 8 | eqid | |- ( mrCls ` C ) = ( mrCls ` C ) |
|
| 9 | 8 | mrccl | |- ( ( C e. ( Moore ` X ) /\ U. x C_ X ) -> ( ( mrCls ` C ) ` U. x ) e. C ) |
| 10 | 7 9 | syldan | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( mrCls ` C ) ` U. x ) e. C ) |
| 11 | simpl | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> C e. ( Moore ` X ) ) |
|
| 12 | simpr | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> x C_ C ) |
|
| 13 | eqidd | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( lub ` I ) = ( lub ` I ) ) |
|
| 14 | 8 | mrcval | |- ( ( C e. ( Moore ` X ) /\ U. x C_ X ) -> ( ( mrCls ` C ) ` U. x ) = |^| { y e. C | U. x C_ y } ) |
| 15 | 7 14 | syldan | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( mrCls ` C ) ` U. x ) = |^| { y e. C | U. x C_ y } ) |
| 16 | 1 11 12 13 15 | ipolubdm | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( x e. dom ( lub ` I ) <-> ( ( mrCls ` C ) ` U. x ) e. C ) ) |
| 17 | 10 16 | mpbird | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> x e. dom ( lub ` I ) ) |
| 18 | ssv | |- y C_ _V |
|
| 19 | int0 | |- |^| (/) = _V |
|
| 20 | 18 19 | sseqtrri | |- y C_ |^| (/) |
| 21 | simplr | |- ( ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) /\ y e. C ) -> x = (/) ) |
|
| 22 | 21 | inteqd | |- ( ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) /\ y e. C ) -> |^| x = |^| (/) ) |
| 23 | 20 22 | sseqtrrid | |- ( ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) /\ y e. C ) -> y C_ |^| x ) |
| 24 | 23 | rabeqcda | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> { y e. C | y C_ |^| x } = C ) |
| 25 | 24 | unieqd | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> U. { y e. C | y C_ |^| x } = U. C ) |
| 26 | mreuni | |- ( C e. ( Moore ` X ) -> U. C = X ) |
|
| 27 | mre1cl | |- ( C e. ( Moore ` X ) -> X e. C ) |
|
| 28 | 26 27 | eqeltrd | |- ( C e. ( Moore ` X ) -> U. C e. C ) |
| 29 | 28 | ad2antrr | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> U. C e. C ) |
| 30 | 25 29 | eqeltrd | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> U. { y e. C | y C_ |^| x } e. C ) |
| 31 | mreintcl | |- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> |^| x e. C ) |
|
| 32 | unimax | |- ( |^| x e. C -> U. { y e. C | y C_ |^| x } = |^| x ) |
|
| 33 | 31 32 | syl | |- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> U. { y e. C | y C_ |^| x } = |^| x ) |
| 34 | 33 31 | eqeltrd | |- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> U. { y e. C | y C_ |^| x } e. C ) |
| 35 | 34 | 3expa | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x =/= (/) ) -> U. { y e. C | y C_ |^| x } e. C ) |
| 36 | 30 35 | pm2.61dane | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. { y e. C | y C_ |^| x } e. C ) |
| 37 | eqidd | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( glb ` I ) = ( glb ` I ) ) |
|
| 38 | eqidd | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. { y e. C | y C_ |^| x } = U. { y e. C | y C_ |^| x } ) |
|
| 39 | 1 11 12 37 38 | ipoglbdm | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( x e. dom ( glb ` I ) <-> U. { y e. C | y C_ |^| x } e. C ) ) |
| 40 | 36 39 | mpbird | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> x e. dom ( glb ` I ) ) |
| 41 | 2 3 4 6 17 40 | isclatd | |- ( C e. ( Moore ` X ) -> I e. CLat ) |