This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unimax | ⊢ ( 𝐴 ∈ 𝐵 → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 3 | 2 | elrab3 | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ↔ 𝐴 ⊆ 𝐴 ) ) |
| 4 | 1 3 | mpbiri | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 5 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 6 | 5 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ) |
| 7 | 6 | simprbi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → 𝑦 ⊆ 𝐴 ) |
| 8 | 7 | rgen | ⊢ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐴 |
| 9 | ssunieq | ⊢ ( ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐴 ) → 𝐴 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) | |
| 10 | 9 | eqcomd | ⊢ ( ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐴 ) → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |
| 11 | 4 8 10 | sylancl | ⊢ ( 𝐴 ∈ 𝐵 → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |