This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclatd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| isclatd.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐾 ) ) | ||
| isclatd.g | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐾 ) ) | ||
| isclatd.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| isclatd.1 | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → 𝑠 ∈ dom 𝑈 ) | ||
| isclatd.2 | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → 𝑠 ∈ dom 𝐺 ) | ||
| Assertion | isclatd | ⊢ ( 𝜑 → 𝐾 ∈ CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclatd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | isclatd.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐾 ) ) | |
| 3 | isclatd.g | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐾 ) ) | |
| 4 | isclatd.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 5 | isclatd.1 | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → 𝑠 ∈ dom 𝑈 ) | |
| 6 | isclatd.2 | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → 𝑠 ∈ dom 𝐺 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 8 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 9 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 10 | biid | ⊢ ( ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) | |
| 11 | 7 8 9 10 4 | lubdm | ⊢ ( 𝜑 → dom ( lub ‘ 𝐾 ) = { 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) } ) |
| 12 | ssrab2 | ⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) } ⊆ 𝒫 ( Base ‘ 𝐾 ) | |
| 13 | 11 12 | eqsstrdi | ⊢ ( 𝜑 → dom ( lub ‘ 𝐾 ) ⊆ 𝒫 ( Base ‘ 𝐾 ) ) |
| 14 | elpwi | ⊢ ( 𝑠 ∈ 𝒫 𝐵 → 𝑠 ⊆ 𝐵 ) | |
| 15 | 14 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ dom 𝑈 ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ∈ dom 𝑈 ) |
| 17 | dfss3 | ⊢ ( 𝒫 𝐵 ⊆ dom 𝑈 ↔ ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ∈ dom 𝑈 ) | |
| 18 | 16 17 | sylibr | ⊢ ( 𝜑 → 𝒫 𝐵 ⊆ dom 𝑈 ) |
| 19 | 1 | pweqd | ⊢ ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ) |
| 20 | 2 | dmeqd | ⊢ ( 𝜑 → dom 𝑈 = dom ( lub ‘ 𝐾 ) ) |
| 21 | 18 19 20 | 3sstr3d | ⊢ ( 𝜑 → 𝒫 ( Base ‘ 𝐾 ) ⊆ dom ( lub ‘ 𝐾 ) ) |
| 22 | 13 21 | eqssd | ⊢ ( 𝜑 → dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) |
| 23 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 24 | biid | ⊢ ( ( ∀ 𝑦 ∈ 𝑡 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) | |
| 25 | 7 8 23 24 4 | glbdm | ⊢ ( 𝜑 → dom ( glb ‘ 𝐾 ) = { 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) |
| 26 | ssrab2 | ⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ⊆ 𝒫 ( Base ‘ 𝐾 ) | |
| 27 | 25 26 | eqsstrdi | ⊢ ( 𝜑 → dom ( glb ‘ 𝐾 ) ⊆ 𝒫 ( Base ‘ 𝐾 ) ) |
| 28 | 14 6 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ dom 𝐺 ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ∈ dom 𝐺 ) |
| 30 | dfss3 | ⊢ ( 𝒫 𝐵 ⊆ dom 𝐺 ↔ ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ∈ dom 𝐺 ) | |
| 31 | 29 30 | sylibr | ⊢ ( 𝜑 → 𝒫 𝐵 ⊆ dom 𝐺 ) |
| 32 | 3 | dmeqd | ⊢ ( 𝜑 → dom 𝐺 = dom ( glb ‘ 𝐾 ) ) |
| 33 | 31 19 32 | 3sstr3d | ⊢ ( 𝜑 → 𝒫 ( Base ‘ 𝐾 ) ⊆ dom ( glb ‘ 𝐾 ) ) |
| 34 | 27 33 | eqssd | ⊢ ( 𝜑 → dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) |
| 35 | 7 9 23 | isclat | ⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) ) ) |
| 36 | 35 | biimpri | ⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) ) → 𝐾 ∈ CLat ) |
| 37 | 4 22 34 36 | syl12anc | ⊢ ( 𝜑 → 𝐾 ∈ CLat ) |