This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | monoords.fk | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| monoords.flt | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | ||
| monoords.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝑀 ... 𝑁 ) ) | ||
| monoords.j | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) | ||
| monoords.iltj | ⊢ ( 𝜑 → 𝐼 < 𝐽 ) | ||
| Assertion | monoords | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) < ( 𝐹 ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoords.fk | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 2 | monoords.flt | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 3 | monoords.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 4 | monoords.j | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 5 | monoords.iltj | ⊢ ( 𝜑 → 𝐼 < 𝐽 ) | |
| 6 | 3 | ancli | ⊢ ( 𝜑 → ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 7 | eleq1 | ⊢ ( 𝑘 = 𝐼 → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝐼 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 8 | 7 | anbi2d | ⊢ ( 𝑘 = 𝐼 → ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑘 = 𝐼 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝐼 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑘 = 𝐼 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) ) |
| 11 | 8 10 | imbi12d | ⊢ ( 𝑘 = 𝐼 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) ) ) |
| 12 | 11 1 | vtoclg | ⊢ ( 𝐼 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) ) |
| 13 | 3 6 12 | sylc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 14 | elfzel1 | ⊢ ( 𝐼 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℤ ) | |
| 15 | 3 14 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 16 | 3 | elfzelzd | ⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
| 17 | elfzle1 | ⊢ ( 𝐼 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ≤ 𝐼 ) | |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → 𝑀 ≤ 𝐼 ) |
| 19 | eluz2 | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) ) | |
| 20 | 15 16 18 19 | syl3anbrc | ⊢ ( 𝜑 → 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 21 | elfzuz2 | ⊢ ( 𝐼 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 22 | 3 21 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 23 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 25 | 16 | zred | ⊢ ( 𝜑 → 𝐼 ∈ ℝ ) |
| 26 | 4 | elfzelzd | ⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
| 27 | 26 | zred | ⊢ ( 𝜑 → 𝐽 ∈ ℝ ) |
| 28 | 24 | zred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 29 | elfzle2 | ⊢ ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) → 𝐽 ≤ 𝑁 ) | |
| 30 | 4 29 | syl | ⊢ ( 𝜑 → 𝐽 ≤ 𝑁 ) |
| 31 | 25 27 28 5 30 | ltletrd | ⊢ ( 𝜑 → 𝐼 < 𝑁 ) |
| 32 | elfzo2 | ⊢ ( 𝐼 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 < 𝑁 ) ) | |
| 33 | 20 24 31 32 | syl3anbrc | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝑀 ..^ 𝑁 ) ) |
| 34 | fzofzp1 | ⊢ ( 𝐼 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝐼 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 36 | 35 | ancli | ⊢ ( 𝜑 → ( 𝜑 ∧ ( 𝐼 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 37 | eleq1 | ⊢ ( 𝑘 = ( 𝐼 + 1 ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐼 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 38 | 37 | anbi2d | ⊢ ( 𝑘 = ( 𝐼 + 1 ) → ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝜑 ∧ ( 𝐼 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 39 | fveq2 | ⊢ ( 𝑘 = ( 𝐼 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) | |
| 40 | 39 | eleq1d | ⊢ ( 𝑘 = ( 𝐼 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) ) |
| 41 | 38 40 | imbi12d | ⊢ ( 𝑘 = ( 𝐼 + 1 ) → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐼 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) ) ) |
| 42 | 41 1 | vtoclg | ⊢ ( ( 𝐼 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝜑 ∧ ( 𝐼 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) ) |
| 43 | 35 36 42 | sylc | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) |
| 44 | 4 | ancli | ⊢ ( 𝜑 → ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 45 | eleq1 | ⊢ ( 𝑘 = 𝐽 → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 46 | 45 | anbi2d | ⊢ ( 𝑘 = 𝐽 → ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 47 | fveq2 | ⊢ ( 𝑘 = 𝐽 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝐽 ) ) | |
| 48 | 47 | eleq1d | ⊢ ( 𝑘 = 𝐽 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐽 ) ∈ ℝ ) ) |
| 49 | 46 48 | imbi12d | ⊢ ( 𝑘 = 𝐽 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝐽 ) ∈ ℝ ) ) ) |
| 50 | 49 1 | vtoclg | ⊢ ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝐽 ) ∈ ℝ ) ) |
| 51 | 4 44 50 | sylc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐽 ) ∈ ℝ ) |
| 52 | 33 | ancli | ⊢ ( 𝜑 → ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 ..^ 𝑁 ) ) ) |
| 53 | eleq1 | ⊢ ( 𝑘 = 𝐼 → ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↔ 𝐼 ∈ ( 𝑀 ..^ 𝑁 ) ) ) | |
| 54 | 53 | anbi2d | ⊢ ( 𝑘 = 𝐼 → ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ↔ ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 ..^ 𝑁 ) ) ) ) |
| 55 | fvoveq1 | ⊢ ( 𝑘 = 𝐼 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) | |
| 56 | 9 55 | breq12d | ⊢ ( 𝑘 = 𝐼 → ( ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹 ‘ 𝐼 ) < ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ) |
| 57 | 54 56 | imbi12d | ⊢ ( 𝑘 = 𝐼 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝐼 ) < ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ) ) |
| 58 | 57 2 | vtoclg | ⊢ ( 𝐼 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝐼 ) < ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ) |
| 59 | 33 52 58 | sylc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) < ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) |
| 60 | 16 | peano2zd | ⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ℤ ) |
| 61 | zltp1le | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( 𝐼 < 𝐽 ↔ ( 𝐼 + 1 ) ≤ 𝐽 ) ) | |
| 62 | 16 26 61 | syl2anc | ⊢ ( 𝜑 → ( 𝐼 < 𝐽 ↔ ( 𝐼 + 1 ) ≤ 𝐽 ) ) |
| 63 | 5 62 | mpbid | ⊢ ( 𝜑 → ( 𝐼 + 1 ) ≤ 𝐽 ) |
| 64 | eluz2 | ⊢ ( 𝐽 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ↔ ( ( 𝐼 + 1 ) ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ ( 𝐼 + 1 ) ≤ 𝐽 ) ) | |
| 65 | 60 26 63 64 | syl3anbrc | ⊢ ( 𝜑 → 𝐽 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) |
| 66 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑀 ∈ ℤ ) |
| 67 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑁 ∈ ℤ ) |
| 68 | elfzelz | ⊢ ( 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) → 𝑘 ∈ ℤ ) | |
| 69 | 68 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑘 ∈ ℤ ) |
| 70 | 66 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑀 ∈ ℝ ) |
| 71 | 69 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑘 ∈ ℝ ) |
| 72 | 60 | zred | ⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ℝ ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → ( 𝐼 + 1 ) ∈ ℝ ) |
| 74 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝐼 ∈ ℝ ) |
| 75 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑀 ≤ 𝐼 ) |
| 76 | 74 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝐼 < ( 𝐼 + 1 ) ) |
| 77 | 70 74 73 75 76 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑀 < ( 𝐼 + 1 ) ) |
| 78 | elfzle1 | ⊢ ( 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) → ( 𝐼 + 1 ) ≤ 𝑘 ) | |
| 79 | 78 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → ( 𝐼 + 1 ) ≤ 𝑘 ) |
| 80 | 70 73 71 77 79 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑀 < 𝑘 ) |
| 81 | 70 71 80 | ltled | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑀 ≤ 𝑘 ) |
| 82 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝐽 ∈ ℝ ) |
| 83 | 67 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑁 ∈ ℝ ) |
| 84 | elfzle2 | ⊢ ( 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) → 𝑘 ≤ 𝐽 ) | |
| 85 | 84 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑘 ≤ 𝐽 ) |
| 86 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝐽 ≤ 𝑁 ) |
| 87 | 71 82 83 85 86 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑘 ≤ 𝑁 ) |
| 88 | 66 67 69 81 87 | elfzd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 89 | 88 1 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... 𝐽 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 90 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 91 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 92 | elfzelz | ⊢ ( 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) → 𝑘 ∈ ℤ ) | |
| 93 | 92 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 94 | 90 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 95 | 93 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 96 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐼 + 1 ) ∈ ℝ ) |
| 97 | 15 | zred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 98 | 25 | ltp1d | ⊢ ( 𝜑 → 𝐼 < ( 𝐼 + 1 ) ) |
| 99 | 97 25 72 18 98 | lelttrd | ⊢ ( 𝜑 → 𝑀 < ( 𝐼 + 1 ) ) |
| 100 | 99 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑀 < ( 𝐼 + 1 ) ) |
| 101 | elfzle1 | ⊢ ( 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) → ( 𝐼 + 1 ) ≤ 𝑘 ) | |
| 102 | 101 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐼 + 1 ) ≤ 𝑘 ) |
| 103 | 94 96 95 100 102 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑀 < 𝑘 ) |
| 104 | 94 95 103 | ltled | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑀 ≤ 𝑘 ) |
| 105 | 91 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑁 ∈ ℝ ) |
| 106 | peano2rem | ⊢ ( 𝐽 ∈ ℝ → ( 𝐽 − 1 ) ∈ ℝ ) | |
| 107 | 27 106 | syl | ⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ℝ ) |
| 108 | 107 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐽 − 1 ) ∈ ℝ ) |
| 109 | elfzle2 | ⊢ ( 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) → 𝑘 ≤ ( 𝐽 − 1 ) ) | |
| 110 | 109 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑘 ≤ ( 𝐽 − 1 ) ) |
| 111 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝐽 ∈ ℝ ) |
| 112 | 111 | ltm1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐽 − 1 ) < 𝐽 ) |
| 113 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝐽 ≤ 𝑁 ) |
| 114 | 108 111 105 112 113 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐽 − 1 ) < 𝑁 ) |
| 115 | 95 108 105 110 114 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑘 < 𝑁 ) |
| 116 | 95 105 115 | ltled | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑘 ≤ 𝑁 ) |
| 117 | 90 91 93 104 116 | elfzd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 118 | 117 1 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 119 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 120 | 91 119 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 121 | 120 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝑁 − 1 ) ∈ ℝ ) |
| 122 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 123 | 27 28 122 30 | lesub1dd | ⊢ ( 𝜑 → ( 𝐽 − 1 ) ≤ ( 𝑁 − 1 ) ) |
| 124 | 123 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐽 − 1 ) ≤ ( 𝑁 − 1 ) ) |
| 125 | 95 108 121 110 124 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑘 ≤ ( 𝑁 − 1 ) ) |
| 126 | 90 120 93 104 125 | elfzd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 127 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 128 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 129 | 24 128 | syl | ⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 130 | 129 | eqcomd | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 − 1 ) ) = ( 𝑀 ..^ 𝑁 ) ) |
| 131 | 130 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑀 ... ( 𝑁 − 1 ) ) = ( 𝑀 ..^ 𝑁 ) ) |
| 132 | 127 131 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) |
| 133 | fzofzp1 | ⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 134 | 132 133 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 135 | simpl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝜑 ) | |
| 136 | 135 134 | jca | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 137 | eleq1 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 138 | 137 | anbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 139 | fveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 140 | 139 | eleq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ) |
| 141 | 138 140 | imbi12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ) ) |
| 142 | eleq1 | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 143 | 142 | anbi2d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 144 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 145 | 144 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) |
| 146 | 143 145 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) ) |
| 147 | 146 1 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 148 | 141 147 | vtoclg | ⊢ ( ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ) |
| 149 | 134 136 148 | sylc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 150 | 126 149 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 151 | 132 2 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 152 | 126 151 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 153 | 118 150 152 | ltled | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 154 | 65 89 153 | monoord | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐼 + 1 ) ) ≤ ( 𝐹 ‘ 𝐽 ) ) |
| 155 | 13 43 51 59 154 | ltletrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) < ( 𝐹 ‘ 𝐽 ) ) |