This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | monoords.fk | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
|
| monoords.flt | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) |
||
| monoords.i | |- ( ph -> I e. ( M ... N ) ) |
||
| monoords.j | |- ( ph -> J e. ( M ... N ) ) |
||
| monoords.iltj | |- ( ph -> I < J ) |
||
| Assertion | monoords | |- ( ph -> ( F ` I ) < ( F ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoords.fk | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
|
| 2 | monoords.flt | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) |
|
| 3 | monoords.i | |- ( ph -> I e. ( M ... N ) ) |
|
| 4 | monoords.j | |- ( ph -> J e. ( M ... N ) ) |
|
| 5 | monoords.iltj | |- ( ph -> I < J ) |
|
| 6 | 3 | ancli | |- ( ph -> ( ph /\ I e. ( M ... N ) ) ) |
| 7 | eleq1 | |- ( k = I -> ( k e. ( M ... N ) <-> I e. ( M ... N ) ) ) |
|
| 8 | 7 | anbi2d | |- ( k = I -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ I e. ( M ... N ) ) ) ) |
| 9 | fveq2 | |- ( k = I -> ( F ` k ) = ( F ` I ) ) |
|
| 10 | 9 | eleq1d | |- ( k = I -> ( ( F ` k ) e. RR <-> ( F ` I ) e. RR ) ) |
| 11 | 8 10 | imbi12d | |- ( k = I -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ I e. ( M ... N ) ) -> ( F ` I ) e. RR ) ) ) |
| 12 | 11 1 | vtoclg | |- ( I e. ( M ... N ) -> ( ( ph /\ I e. ( M ... N ) ) -> ( F ` I ) e. RR ) ) |
| 13 | 3 6 12 | sylc | |- ( ph -> ( F ` I ) e. RR ) |
| 14 | elfzel1 | |- ( I e. ( M ... N ) -> M e. ZZ ) |
|
| 15 | 3 14 | syl | |- ( ph -> M e. ZZ ) |
| 16 | 3 | elfzelzd | |- ( ph -> I e. ZZ ) |
| 17 | elfzle1 | |- ( I e. ( M ... N ) -> M <_ I ) |
|
| 18 | 3 17 | syl | |- ( ph -> M <_ I ) |
| 19 | eluz2 | |- ( I e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ I e. ZZ /\ M <_ I ) ) |
|
| 20 | 15 16 18 19 | syl3anbrc | |- ( ph -> I e. ( ZZ>= ` M ) ) |
| 21 | elfzuz2 | |- ( I e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) |
|
| 22 | 3 21 | syl | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 23 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 24 | 22 23 | syl | |- ( ph -> N e. ZZ ) |
| 25 | 16 | zred | |- ( ph -> I e. RR ) |
| 26 | 4 | elfzelzd | |- ( ph -> J e. ZZ ) |
| 27 | 26 | zred | |- ( ph -> J e. RR ) |
| 28 | 24 | zred | |- ( ph -> N e. RR ) |
| 29 | elfzle2 | |- ( J e. ( M ... N ) -> J <_ N ) |
|
| 30 | 4 29 | syl | |- ( ph -> J <_ N ) |
| 31 | 25 27 28 5 30 | ltletrd | |- ( ph -> I < N ) |
| 32 | elfzo2 | |- ( I e. ( M ..^ N ) <-> ( I e. ( ZZ>= ` M ) /\ N e. ZZ /\ I < N ) ) |
|
| 33 | 20 24 31 32 | syl3anbrc | |- ( ph -> I e. ( M ..^ N ) ) |
| 34 | fzofzp1 | |- ( I e. ( M ..^ N ) -> ( I + 1 ) e. ( M ... N ) ) |
|
| 35 | 33 34 | syl | |- ( ph -> ( I + 1 ) e. ( M ... N ) ) |
| 36 | 35 | ancli | |- ( ph -> ( ph /\ ( I + 1 ) e. ( M ... N ) ) ) |
| 37 | eleq1 | |- ( k = ( I + 1 ) -> ( k e. ( M ... N ) <-> ( I + 1 ) e. ( M ... N ) ) ) |
|
| 38 | 37 | anbi2d | |- ( k = ( I + 1 ) -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ ( I + 1 ) e. ( M ... N ) ) ) ) |
| 39 | fveq2 | |- ( k = ( I + 1 ) -> ( F ` k ) = ( F ` ( I + 1 ) ) ) |
|
| 40 | 39 | eleq1d | |- ( k = ( I + 1 ) -> ( ( F ` k ) e. RR <-> ( F ` ( I + 1 ) ) e. RR ) ) |
| 41 | 38 40 | imbi12d | |- ( k = ( I + 1 ) -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ ( I + 1 ) e. ( M ... N ) ) -> ( F ` ( I + 1 ) ) e. RR ) ) ) |
| 42 | 41 1 | vtoclg | |- ( ( I + 1 ) e. ( M ... N ) -> ( ( ph /\ ( I + 1 ) e. ( M ... N ) ) -> ( F ` ( I + 1 ) ) e. RR ) ) |
| 43 | 35 36 42 | sylc | |- ( ph -> ( F ` ( I + 1 ) ) e. RR ) |
| 44 | 4 | ancli | |- ( ph -> ( ph /\ J e. ( M ... N ) ) ) |
| 45 | eleq1 | |- ( k = J -> ( k e. ( M ... N ) <-> J e. ( M ... N ) ) ) |
|
| 46 | 45 | anbi2d | |- ( k = J -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ J e. ( M ... N ) ) ) ) |
| 47 | fveq2 | |- ( k = J -> ( F ` k ) = ( F ` J ) ) |
|
| 48 | 47 | eleq1d | |- ( k = J -> ( ( F ` k ) e. RR <-> ( F ` J ) e. RR ) ) |
| 49 | 46 48 | imbi12d | |- ( k = J -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ J e. ( M ... N ) ) -> ( F ` J ) e. RR ) ) ) |
| 50 | 49 1 | vtoclg | |- ( J e. ( M ... N ) -> ( ( ph /\ J e. ( M ... N ) ) -> ( F ` J ) e. RR ) ) |
| 51 | 4 44 50 | sylc | |- ( ph -> ( F ` J ) e. RR ) |
| 52 | 33 | ancli | |- ( ph -> ( ph /\ I e. ( M ..^ N ) ) ) |
| 53 | eleq1 | |- ( k = I -> ( k e. ( M ..^ N ) <-> I e. ( M ..^ N ) ) ) |
|
| 54 | 53 | anbi2d | |- ( k = I -> ( ( ph /\ k e. ( M ..^ N ) ) <-> ( ph /\ I e. ( M ..^ N ) ) ) ) |
| 55 | fvoveq1 | |- ( k = I -> ( F ` ( k + 1 ) ) = ( F ` ( I + 1 ) ) ) |
|
| 56 | 9 55 | breq12d | |- ( k = I -> ( ( F ` k ) < ( F ` ( k + 1 ) ) <-> ( F ` I ) < ( F ` ( I + 1 ) ) ) ) |
| 57 | 54 56 | imbi12d | |- ( k = I -> ( ( ( ph /\ k e. ( M ..^ N ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) <-> ( ( ph /\ I e. ( M ..^ N ) ) -> ( F ` I ) < ( F ` ( I + 1 ) ) ) ) ) |
| 58 | 57 2 | vtoclg | |- ( I e. ( M ..^ N ) -> ( ( ph /\ I e. ( M ..^ N ) ) -> ( F ` I ) < ( F ` ( I + 1 ) ) ) ) |
| 59 | 33 52 58 | sylc | |- ( ph -> ( F ` I ) < ( F ` ( I + 1 ) ) ) |
| 60 | 16 | peano2zd | |- ( ph -> ( I + 1 ) e. ZZ ) |
| 61 | zltp1le | |- ( ( I e. ZZ /\ J e. ZZ ) -> ( I < J <-> ( I + 1 ) <_ J ) ) |
|
| 62 | 16 26 61 | syl2anc | |- ( ph -> ( I < J <-> ( I + 1 ) <_ J ) ) |
| 63 | 5 62 | mpbid | |- ( ph -> ( I + 1 ) <_ J ) |
| 64 | eluz2 | |- ( J e. ( ZZ>= ` ( I + 1 ) ) <-> ( ( I + 1 ) e. ZZ /\ J e. ZZ /\ ( I + 1 ) <_ J ) ) |
|
| 65 | 60 26 63 64 | syl3anbrc | |- ( ph -> J e. ( ZZ>= ` ( I + 1 ) ) ) |
| 66 | 15 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M e. ZZ ) |
| 67 | 24 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> N e. ZZ ) |
| 68 | elfzelz | |- ( k e. ( ( I + 1 ) ... J ) -> k e. ZZ ) |
|
| 69 | 68 | adantl | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k e. ZZ ) |
| 70 | 66 | zred | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M e. RR ) |
| 71 | 69 | zred | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k e. RR ) |
| 72 | 60 | zred | |- ( ph -> ( I + 1 ) e. RR ) |
| 73 | 72 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> ( I + 1 ) e. RR ) |
| 74 | 25 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> I e. RR ) |
| 75 | 18 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M <_ I ) |
| 76 | 74 | ltp1d | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> I < ( I + 1 ) ) |
| 77 | 70 74 73 75 76 | lelttrd | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M < ( I + 1 ) ) |
| 78 | elfzle1 | |- ( k e. ( ( I + 1 ) ... J ) -> ( I + 1 ) <_ k ) |
|
| 79 | 78 | adantl | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> ( I + 1 ) <_ k ) |
| 80 | 70 73 71 77 79 | ltletrd | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M < k ) |
| 81 | 70 71 80 | ltled | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M <_ k ) |
| 82 | 27 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> J e. RR ) |
| 83 | 67 | zred | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> N e. RR ) |
| 84 | elfzle2 | |- ( k e. ( ( I + 1 ) ... J ) -> k <_ J ) |
|
| 85 | 84 | adantl | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k <_ J ) |
| 86 | 30 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> J <_ N ) |
| 87 | 71 82 83 85 86 | letrd | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k <_ N ) |
| 88 | 66 67 69 81 87 | elfzd | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k e. ( M ... N ) ) |
| 89 | 88 1 | syldan | |- ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> ( F ` k ) e. RR ) |
| 90 | 15 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M e. ZZ ) |
| 91 | 24 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> N e. ZZ ) |
| 92 | elfzelz | |- ( k e. ( ( I + 1 ) ... ( J - 1 ) ) -> k e. ZZ ) |
|
| 93 | 92 | adantl | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k e. ZZ ) |
| 94 | 90 | zred | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M e. RR ) |
| 95 | 93 | zred | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k e. RR ) |
| 96 | 72 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( I + 1 ) e. RR ) |
| 97 | 15 | zred | |- ( ph -> M e. RR ) |
| 98 | 25 | ltp1d | |- ( ph -> I < ( I + 1 ) ) |
| 99 | 97 25 72 18 98 | lelttrd | |- ( ph -> M < ( I + 1 ) ) |
| 100 | 99 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M < ( I + 1 ) ) |
| 101 | elfzle1 | |- ( k e. ( ( I + 1 ) ... ( J - 1 ) ) -> ( I + 1 ) <_ k ) |
|
| 102 | 101 | adantl | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( I + 1 ) <_ k ) |
| 103 | 94 96 95 100 102 | ltletrd | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M < k ) |
| 104 | 94 95 103 | ltled | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M <_ k ) |
| 105 | 91 | zred | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> N e. RR ) |
| 106 | peano2rem | |- ( J e. RR -> ( J - 1 ) e. RR ) |
|
| 107 | 27 106 | syl | |- ( ph -> ( J - 1 ) e. RR ) |
| 108 | 107 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( J - 1 ) e. RR ) |
| 109 | elfzle2 | |- ( k e. ( ( I + 1 ) ... ( J - 1 ) ) -> k <_ ( J - 1 ) ) |
|
| 110 | 109 | adantl | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k <_ ( J - 1 ) ) |
| 111 | 27 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> J e. RR ) |
| 112 | 111 | ltm1d | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( J - 1 ) < J ) |
| 113 | 30 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> J <_ N ) |
| 114 | 108 111 105 112 113 | ltletrd | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( J - 1 ) < N ) |
| 115 | 95 108 105 110 114 | lelttrd | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k < N ) |
| 116 | 95 105 115 | ltled | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k <_ N ) |
| 117 | 90 91 93 104 116 | elfzd | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k e. ( M ... N ) ) |
| 118 | 117 1 | syldan | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( F ` k ) e. RR ) |
| 119 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 120 | 91 119 | syl | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( N - 1 ) e. ZZ ) |
| 121 | 120 | zred | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( N - 1 ) e. RR ) |
| 122 | 1red | |- ( ph -> 1 e. RR ) |
|
| 123 | 27 28 122 30 | lesub1dd | |- ( ph -> ( J - 1 ) <_ ( N - 1 ) ) |
| 124 | 123 | adantr | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( J - 1 ) <_ ( N - 1 ) ) |
| 125 | 95 108 121 110 124 | letrd | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k <_ ( N - 1 ) ) |
| 126 | 90 120 93 104 125 | elfzd | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k e. ( M ... ( N - 1 ) ) ) |
| 127 | simpr | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ... ( N - 1 ) ) ) |
|
| 128 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 129 | 24 128 | syl | |- ( ph -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 130 | 129 | eqcomd | |- ( ph -> ( M ... ( N - 1 ) ) = ( M ..^ N ) ) |
| 131 | 130 | adantr | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( M ... ( N - 1 ) ) = ( M ..^ N ) ) |
| 132 | 127 131 | eleqtrd | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ..^ N ) ) |
| 133 | fzofzp1 | |- ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) |
|
| 134 | 132 133 | syl | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( M ... N ) ) |
| 135 | simpl | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ph ) |
|
| 136 | 135 134 | jca | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( ph /\ ( k + 1 ) e. ( M ... N ) ) ) |
| 137 | eleq1 | |- ( j = ( k + 1 ) -> ( j e. ( M ... N ) <-> ( k + 1 ) e. ( M ... N ) ) ) |
|
| 138 | 137 | anbi2d | |- ( j = ( k + 1 ) -> ( ( ph /\ j e. ( M ... N ) ) <-> ( ph /\ ( k + 1 ) e. ( M ... N ) ) ) ) |
| 139 | fveq2 | |- ( j = ( k + 1 ) -> ( F ` j ) = ( F ` ( k + 1 ) ) ) |
|
| 140 | 139 | eleq1d | |- ( j = ( k + 1 ) -> ( ( F ` j ) e. RR <-> ( F ` ( k + 1 ) ) e. RR ) ) |
| 141 | 138 140 | imbi12d | |- ( j = ( k + 1 ) -> ( ( ( ph /\ j e. ( M ... N ) ) -> ( F ` j ) e. RR ) <-> ( ( ph /\ ( k + 1 ) e. ( M ... N ) ) -> ( F ` ( k + 1 ) ) e. RR ) ) ) |
| 142 | eleq1 | |- ( k = j -> ( k e. ( M ... N ) <-> j e. ( M ... N ) ) ) |
|
| 143 | 142 | anbi2d | |- ( k = j -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ j e. ( M ... N ) ) ) ) |
| 144 | fveq2 | |- ( k = j -> ( F ` k ) = ( F ` j ) ) |
|
| 145 | 144 | eleq1d | |- ( k = j -> ( ( F ` k ) e. RR <-> ( F ` j ) e. RR ) ) |
| 146 | 143 145 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ j e. ( M ... N ) ) -> ( F ` j ) e. RR ) ) ) |
| 147 | 146 1 | chvarvv | |- ( ( ph /\ j e. ( M ... N ) ) -> ( F ` j ) e. RR ) |
| 148 | 141 147 | vtoclg | |- ( ( k + 1 ) e. ( M ... N ) -> ( ( ph /\ ( k + 1 ) e. ( M ... N ) ) -> ( F ` ( k + 1 ) ) e. RR ) ) |
| 149 | 134 136 148 | sylc | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` ( k + 1 ) ) e. RR ) |
| 150 | 126 149 | syldan | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( F ` ( k + 1 ) ) e. RR ) |
| 151 | 132 2 | syldan | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) |
| 152 | 126 151 | syldan | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) |
| 153 | 118 150 152 | ltled | |- ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 154 | 65 89 153 | monoord | |- ( ph -> ( F ` ( I + 1 ) ) <_ ( F ` J ) ) |
| 155 | 13 43 51 59 154 | ltletrd | |- ( ph -> ( F ` I ) < ( F ` J ) ) |