This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubmd.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| issubmd.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| issubmd.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| issubmd.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
| issubmd.cz | ⊢ ( 𝜑 → 𝜒 ) | ||
| issubmd.cp | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) → 𝜂 ) | ||
| issubmd.ch | ⊢ ( 𝑧 = 0 → ( 𝜓 ↔ 𝜒 ) ) | ||
| issubmd.th | ⊢ ( 𝑧 = 𝑥 → ( 𝜓 ↔ 𝜃 ) ) | ||
| issubmd.ta | ⊢ ( 𝑧 = 𝑦 → ( 𝜓 ↔ 𝜏 ) ) | ||
| issubmd.et | ⊢ ( 𝑧 = ( 𝑥 + 𝑦 ) → ( 𝜓 ↔ 𝜂 ) ) | ||
| Assertion | issubmd | ⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubmd.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | issubmd.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | issubmd.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 4 | issubmd.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
| 5 | issubmd.cz | ⊢ ( 𝜑 → 𝜒 ) | |
| 6 | issubmd.cp | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) → 𝜂 ) | |
| 7 | issubmd.ch | ⊢ ( 𝑧 = 0 → ( 𝜓 ↔ 𝜒 ) ) | |
| 8 | issubmd.th | ⊢ ( 𝑧 = 𝑥 → ( 𝜓 ↔ 𝜃 ) ) | |
| 9 | issubmd.ta | ⊢ ( 𝑧 = 𝑦 → ( 𝜓 ↔ 𝜏 ) ) | |
| 10 | issubmd.et | ⊢ ( 𝑧 = ( 𝑥 + 𝑦 ) → ( 𝜓 ↔ 𝜂 ) ) | |
| 11 | ssrab2 | ⊢ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ) |
| 13 | 1 3 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 15 | 7 14 5 | elrabd | ⊢ ( 𝜑 → 0 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
| 16 | 8 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ) |
| 17 | 9 | elrab | ⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) |
| 18 | 16 17 | anbi12i | ⊢ ( ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑀 ∈ Mnd ) |
| 20 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 21 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 22 | 1 2 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 24 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) | |
| 25 | 24 6 | sylan2b | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝜂 ) |
| 26 | 10 23 25 | elrabd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
| 27 | 18 26 | sylan2b | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
| 28 | 27 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
| 29 | 1 3 2 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMnd ‘ 𝑀 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ∧ 0 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) ) |
| 30 | 4 29 | syl | ⊢ ( 𝜑 → ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMnd ‘ 𝑀 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ∧ 0 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) ) |
| 31 | 12 15 28 30 | mpbir3and | ⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMnd ‘ 𝑀 ) ) |