This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | mhmf1o | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | mhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑆 ∈ Mnd ) | |
| 4 | mhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑅 ∈ Mnd ) | |
| 5 | 3 4 | jca | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ) |
| 7 | f1ocnv | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) |
| 9 | f1of | ⊢ ( ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 11 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) | |
| 12 | 10 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 13 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐶 ) | |
| 14 | 12 13 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 15 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) | |
| 16 | 12 15 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 18 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 19 | 1 17 18 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 20 | 11 14 16 19 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 21 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) | |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
| 23 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) | |
| 24 | 22 13 23 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 25 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) | |
| 26 | 22 15 25 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
| 27 | 24 26 | oveq12d | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
| 28 | 20 27 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
| 29 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝑅 ∈ Mnd ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑅 ∈ Mnd ) |
| 31 | 1 17 | mndcl | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 32 | 30 14 16 31 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 33 | f1ocnvfv | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) | |
| 34 | 22 32 33 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 35 | 28 34 | mpd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
| 36 | 35 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
| 37 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 38 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 39 | 37 38 | mhm0 | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 41 | 40 | eqcomd | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 0g ‘ 𝑆 ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 42 | 41 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) ) |
| 43 | 1 37 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 44 | 4 43 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 46 | f1ocnvfv1 | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) | |
| 47 | 21 45 46 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 48 | 42 47 | eqtrd | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑅 ) ) |
| 49 | 10 36 48 | 3jca | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∧ ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 50 | 2 1 18 17 38 37 | ismhm | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ∧ ( ◡ 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∧ ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 51 | 6 49 50 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) |
| 52 | 1 2 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 53 | 52 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 54 | 53 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → 𝐹 Fn 𝐵 ) |
| 55 | 2 1 | mhmf | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 56 | 55 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 57 | 56 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → ◡ 𝐹 Fn 𝐶 ) |
| 58 | dff1o4 | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 Fn 𝐵 ∧ ◡ 𝐹 Fn 𝐶 ) ) | |
| 59 | 54 57 58 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
| 60 | 51 59 | impbida | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) ) |