This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmf1o.b | |- B = ( Base ` R ) |
|
| mhmf1o.c | |- C = ( Base ` S ) |
||
| Assertion | mhmf1o | |- ( F e. ( R MndHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S MndHom R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmf1o.b | |- B = ( Base ` R ) |
|
| 2 | mhmf1o.c | |- C = ( Base ` S ) |
|
| 3 | mhmrcl2 | |- ( F e. ( R MndHom S ) -> S e. Mnd ) |
|
| 4 | mhmrcl1 | |- ( F e. ( R MndHom S ) -> R e. Mnd ) |
|
| 5 | 3 4 | jca | |- ( F e. ( R MndHom S ) -> ( S e. Mnd /\ R e. Mnd ) ) |
| 6 | 5 | adantr | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> ( S e. Mnd /\ R e. Mnd ) ) |
| 7 | f1ocnv | |- ( F : B -1-1-onto-> C -> `' F : C -1-1-onto-> B ) |
|
| 8 | 7 | adantl | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> `' F : C -1-1-onto-> B ) |
| 9 | f1of | |- ( `' F : C -1-1-onto-> B -> `' F : C --> B ) |
|
| 10 | 8 9 | syl | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> `' F : C --> B ) |
| 11 | simpll | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> F e. ( R MndHom S ) ) |
|
| 12 | 10 | adantr | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> `' F : C --> B ) |
| 13 | simprl | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> x e. C ) |
|
| 14 | 12 13 | ffvelcdmd | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( `' F ` x ) e. B ) |
| 15 | simprr | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> y e. C ) |
|
| 16 | 12 15 | ffvelcdmd | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( `' F ` y ) e. B ) |
| 17 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 18 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 19 | 1 17 18 | mhmlin | |- ( ( F e. ( R MndHom S ) /\ ( `' F ` x ) e. B /\ ( `' F ` y ) e. B ) -> ( F ` ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) ) = ( ( F ` ( `' F ` x ) ) ( +g ` S ) ( F ` ( `' F ` y ) ) ) ) |
| 20 | 11 14 16 19 | syl3anc | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( F ` ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) ) = ( ( F ` ( `' F ` x ) ) ( +g ` S ) ( F ` ( `' F ` y ) ) ) ) |
| 21 | simpr | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> F : B -1-1-onto-> C ) |
|
| 22 | 21 | adantr | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> F : B -1-1-onto-> C ) |
| 23 | f1ocnvfv2 | |- ( ( F : B -1-1-onto-> C /\ x e. C ) -> ( F ` ( `' F ` x ) ) = x ) |
|
| 24 | 22 13 23 | syl2anc | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( F ` ( `' F ` x ) ) = x ) |
| 25 | f1ocnvfv2 | |- ( ( F : B -1-1-onto-> C /\ y e. C ) -> ( F ` ( `' F ` y ) ) = y ) |
|
| 26 | 22 15 25 | syl2anc | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( F ` ( `' F ` y ) ) = y ) |
| 27 | 24 26 | oveq12d | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( ( F ` ( `' F ` x ) ) ( +g ` S ) ( F ` ( `' F ` y ) ) ) = ( x ( +g ` S ) y ) ) |
| 28 | 20 27 | eqtrd | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( F ` ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) ) = ( x ( +g ` S ) y ) ) |
| 29 | 4 | adantr | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> R e. Mnd ) |
| 30 | 29 | adantr | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> R e. Mnd ) |
| 31 | 1 17 | mndcl | |- ( ( R e. Mnd /\ ( `' F ` x ) e. B /\ ( `' F ` y ) e. B ) -> ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) e. B ) |
| 32 | 30 14 16 31 | syl3anc | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) e. B ) |
| 33 | f1ocnvfv | |- ( ( F : B -1-1-onto-> C /\ ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) e. B ) -> ( ( F ` ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) ) = ( x ( +g ` S ) y ) -> ( `' F ` ( x ( +g ` S ) y ) ) = ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) ) ) |
|
| 34 | 22 32 33 | syl2anc | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( ( F ` ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) ) = ( x ( +g ` S ) y ) -> ( `' F ` ( x ( +g ` S ) y ) ) = ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) ) ) |
| 35 | 28 34 | mpd | |- ( ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) /\ ( x e. C /\ y e. C ) ) -> ( `' F ` ( x ( +g ` S ) y ) ) = ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) ) |
| 36 | 35 | ralrimivva | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> A. x e. C A. y e. C ( `' F ` ( x ( +g ` S ) y ) ) = ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) ) |
| 37 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 38 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 39 | 37 38 | mhm0 | |- ( F e. ( R MndHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 40 | 39 | adantr | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 41 | 40 | eqcomd | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> ( 0g ` S ) = ( F ` ( 0g ` R ) ) ) |
| 42 | 41 | fveq2d | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F ` ( 0g ` S ) ) = ( `' F ` ( F ` ( 0g ` R ) ) ) ) |
| 43 | 1 37 | mndidcl | |- ( R e. Mnd -> ( 0g ` R ) e. B ) |
| 44 | 4 43 | syl | |- ( F e. ( R MndHom S ) -> ( 0g ` R ) e. B ) |
| 45 | 44 | adantr | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> ( 0g ` R ) e. B ) |
| 46 | f1ocnvfv1 | |- ( ( F : B -1-1-onto-> C /\ ( 0g ` R ) e. B ) -> ( `' F ` ( F ` ( 0g ` R ) ) ) = ( 0g ` R ) ) |
|
| 47 | 21 45 46 | syl2anc | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F ` ( F ` ( 0g ` R ) ) ) = ( 0g ` R ) ) |
| 48 | 42 47 | eqtrd | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F ` ( 0g ` S ) ) = ( 0g ` R ) ) |
| 49 | 10 36 48 | 3jca | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F : C --> B /\ A. x e. C A. y e. C ( `' F ` ( x ( +g ` S ) y ) ) = ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) /\ ( `' F ` ( 0g ` S ) ) = ( 0g ` R ) ) ) |
| 50 | 2 1 18 17 38 37 | ismhm | |- ( `' F e. ( S MndHom R ) <-> ( ( S e. Mnd /\ R e. Mnd ) /\ ( `' F : C --> B /\ A. x e. C A. y e. C ( `' F ` ( x ( +g ` S ) y ) ) = ( ( `' F ` x ) ( +g ` R ) ( `' F ` y ) ) /\ ( `' F ` ( 0g ` S ) ) = ( 0g ` R ) ) ) ) |
| 51 | 6 49 50 | sylanbrc | |- ( ( F e. ( R MndHom S ) /\ F : B -1-1-onto-> C ) -> `' F e. ( S MndHom R ) ) |
| 52 | 1 2 | mhmf | |- ( F e. ( R MndHom S ) -> F : B --> C ) |
| 53 | 52 | adantr | |- ( ( F e. ( R MndHom S ) /\ `' F e. ( S MndHom R ) ) -> F : B --> C ) |
| 54 | 53 | ffnd | |- ( ( F e. ( R MndHom S ) /\ `' F e. ( S MndHom R ) ) -> F Fn B ) |
| 55 | 2 1 | mhmf | |- ( `' F e. ( S MndHom R ) -> `' F : C --> B ) |
| 56 | 55 | adantl | |- ( ( F e. ( R MndHom S ) /\ `' F e. ( S MndHom R ) ) -> `' F : C --> B ) |
| 57 | 56 | ffnd | |- ( ( F e. ( R MndHom S ) /\ `' F e. ( S MndHom R ) ) -> `' F Fn C ) |
| 58 | dff1o4 | |- ( F : B -1-1-onto-> C <-> ( F Fn B /\ `' F Fn C ) ) |
|
| 59 | 54 57 58 | sylanbrc | |- ( ( F e. ( R MndHom S ) /\ `' F e. ( S MndHom R ) ) -> F : B -1-1-onto-> C ) |
| 60 | 51 59 | impbida | |- ( F e. ( R MndHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S MndHom R ) ) ) |