This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| mndvcl.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| Assertion | mndvcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | mndvcl.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | 1 2 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 4 | 3 | 3expb | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 5 | 4 | 3ad2antl1 | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 6 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ 𝐵 ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
| 8 | elmapi | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑌 : 𝐼 ⟶ 𝐵 ) | |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
| 10 | elmapex | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) ) | |
| 11 | 10 | simprd | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐼 ∈ V ) |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ V ) |
| 13 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 14 | 5 7 9 12 12 13 | off | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + 𝑌 ) : 𝐼 ⟶ 𝐵 ) |
| 15 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 16 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) → ( ( 𝑋 ∘f + 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ↔ ( 𝑋 ∘f + 𝑌 ) : 𝐼 ⟶ 𝐵 ) ) | |
| 17 | 15 12 16 | sylancr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( ( 𝑋 ∘f + 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ↔ ( 𝑋 ∘f + 𝑌 ) : 𝐼 ⟶ 𝐵 ) ) |
| 18 | 14 17 | mpbird | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ) |