This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the filter base generated by the metric D are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| Assertion | metustsym | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ◡ 𝐴 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 2 | 1 | metustss | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ⊆ ( 𝑋 × 𝑋 ) ) |
| 3 | cnvss | ⊢ ( 𝐴 ⊆ ( 𝑋 × 𝑋 ) → ◡ 𝐴 ⊆ ◡ ( 𝑋 × 𝑋 ) ) | |
| 4 | cnvxp | ⊢ ◡ ( 𝑋 × 𝑋 ) = ( 𝑋 × 𝑋 ) | |
| 5 | 3 4 | sseqtrdi | ⊢ ( 𝐴 ⊆ ( 𝑋 × 𝑋 ) → ◡ 𝐴 ⊆ ( 𝑋 × 𝑋 ) ) |
| 6 | 2 5 | syl | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ◡ 𝐴 ⊆ ( 𝑋 × 𝑋 ) ) |
| 7 | simp-4l | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 8 | simpr1r | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) → 𝑞 ∈ 𝑋 ) | |
| 9 | 8 | 3anassrs | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑞 ∈ 𝑋 ) |
| 10 | simpr1l | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) → 𝑝 ∈ 𝑋 ) | |
| 11 | 10 | 3anassrs | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑝 ∈ 𝑋 ) |
| 12 | psmetsym | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ∧ 𝑝 ∈ 𝑋 ) → ( 𝑞 𝐷 𝑝 ) = ( 𝑝 𝐷 𝑞 ) ) | |
| 13 | 7 9 11 12 | syl3anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑞 𝐷 𝑝 ) = ( 𝑝 𝐷 𝑞 ) ) |
| 14 | df-ov | ⊢ ( 𝑞 𝐷 𝑝 ) = ( 𝐷 ‘ 〈 𝑞 , 𝑝 〉 ) | |
| 15 | df-ov | ⊢ ( 𝑝 𝐷 𝑞 ) = ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) | |
| 16 | 13 14 15 | 3eqtr3g | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝐷 ‘ 〈 𝑞 , 𝑝 〉 ) = ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ) |
| 17 | 16 | eleq1d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ( 𝐷 ‘ 〈 𝑞 , 𝑝 〉 ) ∈ ( 0 [,) 𝑎 ) ↔ ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ) ) |
| 18 | psmetf | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 19 | ffun | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → Fun 𝐷 ) | |
| 20 | 7 18 19 | 3syl | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → Fun 𝐷 ) |
| 21 | simpllr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) | |
| 22 | 21 | ancomd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑞 ∈ 𝑋 ∧ 𝑝 ∈ 𝑋 ) ) |
| 23 | opelxpi | ⊢ ( ( 𝑞 ∈ 𝑋 ∧ 𝑝 ∈ 𝑋 ) → 〈 𝑞 , 𝑝 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 〈 𝑞 , 𝑝 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 25 | fdm | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom 𝐷 = ( 𝑋 × 𝑋 ) ) | |
| 26 | 7 18 25 | 3syl | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 27 | 24 26 | eleqtrrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 〈 𝑞 , 𝑝 〉 ∈ dom 𝐷 ) |
| 28 | fvimacnv | ⊢ ( ( Fun 𝐷 ∧ 〈 𝑞 , 𝑝 〉 ∈ dom 𝐷 ) → ( ( 𝐷 ‘ 〈 𝑞 , 𝑝 〉 ) ∈ ( 0 [,) 𝑎 ) ↔ 〈 𝑞 , 𝑝 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) | |
| 29 | 20 27 28 | syl2anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ( 𝐷 ‘ 〈 𝑞 , 𝑝 〉 ) ∈ ( 0 [,) 𝑎 ) ↔ 〈 𝑞 , 𝑝 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 30 | opelxpi | ⊢ ( ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) → 〈 𝑝 , 𝑞 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 31 | 21 30 | syl | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 〈 𝑝 , 𝑞 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 32 | 31 26 | eleqtrrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 〈 𝑝 , 𝑞 〉 ∈ dom 𝐷 ) |
| 33 | fvimacnv | ⊢ ( ( Fun 𝐷 ∧ 〈 𝑝 , 𝑞 〉 ∈ dom 𝐷 ) → ( ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ↔ 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) | |
| 34 | 20 32 33 | syl2anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ↔ 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 35 | 17 29 34 | 3bitr3d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 〈 𝑞 , 𝑝 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ↔ 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 36 | simpr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 37 | 36 | eleq2d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 〈 𝑞 , 𝑝 〉 ∈ 𝐴 ↔ 〈 𝑞 , 𝑝 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 38 | 36 | eleq2d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ↔ 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 39 | 35 37 38 | 3bitr4d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 〈 𝑞 , 𝑝 〉 ∈ 𝐴 ↔ 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) ) |
| 40 | eqid | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 41 | 40 | elrnmpt | ⊢ ( 𝐴 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝐴 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 42 | 41 | ibi | ⊢ ( 𝐴 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 43 | 42 1 | eleq2s | ⊢ ( 𝐴 ∈ 𝐹 → ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 44 | 43 | ad2antlr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 45 | 39 44 | r19.29a | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → ( 〈 𝑞 , 𝑝 〉 ∈ 𝐴 ↔ 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) ) |
| 46 | df-br | ⊢ ( 𝑝 ◡ 𝐴 𝑞 ↔ 〈 𝑝 , 𝑞 〉 ∈ ◡ 𝐴 ) | |
| 47 | vex | ⊢ 𝑝 ∈ V | |
| 48 | vex | ⊢ 𝑞 ∈ V | |
| 49 | 47 48 | opelcnv | ⊢ ( 〈 𝑝 , 𝑞 〉 ∈ ◡ 𝐴 ↔ 〈 𝑞 , 𝑝 〉 ∈ 𝐴 ) |
| 50 | 46 49 | bitri | ⊢ ( 𝑝 ◡ 𝐴 𝑞 ↔ 〈 𝑞 , 𝑝 〉 ∈ 𝐴 ) |
| 51 | df-br | ⊢ ( 𝑝 𝐴 𝑞 ↔ 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) | |
| 52 | 45 50 51 | 3bitr4g | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → ( 𝑝 ◡ 𝐴 𝑞 ↔ 𝑝 𝐴 𝑞 ) ) |
| 53 | 52 | 3impb | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) → ( 𝑝 ◡ 𝐴 𝑞 ↔ 𝑝 𝐴 𝑞 ) ) |
| 54 | 6 2 53 | eqbrrdva | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ◡ 𝐴 = 𝐴 ) |