This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of the elements of the filter base generated by the metric D . (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| Assertion | metustss | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ⊆ ( 𝑋 × 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 2 | cnvimass | ⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ dom 𝐷 | |
| 3 | psmetf | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 4 | 2 3 | fssdm | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 6 | cnvexg | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) | |
| 7 | imaexg | ⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ V ) | |
| 8 | elpwg | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ V → ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 11 | 5 10 | mpbird | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 12 | 11 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ∀ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 13 | eqid | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 14 | 13 | rnmptss | ⊢ ( ∀ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 16 | 1 15 | eqsstrid | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 17 | simpr | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ∈ 𝐹 ) | |
| 18 | 16 17 | sseldd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 19 | 18 | elpwid | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ⊆ ( 𝑋 × 𝑋 ) ) |