This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the filter base generated by the metric D are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| Assertion | metustsym | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> `' A = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| 2 | 1 | metustss | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A C_ ( X X. X ) ) |
| 3 | cnvss | |- ( A C_ ( X X. X ) -> `' A C_ `' ( X X. X ) ) |
|
| 4 | cnvxp | |- `' ( X X. X ) = ( X X. X ) |
|
| 5 | 3 4 | sseqtrdi | |- ( A C_ ( X X. X ) -> `' A C_ ( X X. X ) ) |
| 6 | 2 5 | syl | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> `' A C_ ( X X. X ) ) |
| 7 | simp-4l | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> D e. ( PsMet ` X ) ) |
|
| 8 | simpr1r | |- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( ( p e. X /\ q e. X ) /\ a e. RR+ /\ A = ( `' D " ( 0 [,) a ) ) ) ) -> q e. X ) |
|
| 9 | 8 | 3anassrs | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> q e. X ) |
| 10 | simpr1l | |- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( ( p e. X /\ q e. X ) /\ a e. RR+ /\ A = ( `' D " ( 0 [,) a ) ) ) ) -> p e. X ) |
|
| 11 | 10 | 3anassrs | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> p e. X ) |
| 12 | psmetsym | |- ( ( D e. ( PsMet ` X ) /\ q e. X /\ p e. X ) -> ( q D p ) = ( p D q ) ) |
|
| 13 | 7 9 11 12 | syl3anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( q D p ) = ( p D q ) ) |
| 14 | df-ov | |- ( q D p ) = ( D ` <. q , p >. ) |
|
| 15 | df-ov | |- ( p D q ) = ( D ` <. p , q >. ) |
|
| 16 | 13 14 15 | 3eqtr3g | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( D ` <. q , p >. ) = ( D ` <. p , q >. ) ) |
| 17 | 16 | eleq1d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( D ` <. q , p >. ) e. ( 0 [,) a ) <-> ( D ` <. p , q >. ) e. ( 0 [,) a ) ) ) |
| 18 | psmetf | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 19 | ffun | |- ( D : ( X X. X ) --> RR* -> Fun D ) |
|
| 20 | 7 18 19 | 3syl | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> Fun D ) |
| 21 | simpllr | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( p e. X /\ q e. X ) ) |
|
| 22 | 21 | ancomd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( q e. X /\ p e. X ) ) |
| 23 | opelxpi | |- ( ( q e. X /\ p e. X ) -> <. q , p >. e. ( X X. X ) ) |
|
| 24 | 22 23 | syl | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> <. q , p >. e. ( X X. X ) ) |
| 25 | fdm | |- ( D : ( X X. X ) --> RR* -> dom D = ( X X. X ) ) |
|
| 26 | 7 18 25 | 3syl | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> dom D = ( X X. X ) ) |
| 27 | 24 26 | eleqtrrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> <. q , p >. e. dom D ) |
| 28 | fvimacnv | |- ( ( Fun D /\ <. q , p >. e. dom D ) -> ( ( D ` <. q , p >. ) e. ( 0 [,) a ) <-> <. q , p >. e. ( `' D " ( 0 [,) a ) ) ) ) |
|
| 29 | 20 27 28 | syl2anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( D ` <. q , p >. ) e. ( 0 [,) a ) <-> <. q , p >. e. ( `' D " ( 0 [,) a ) ) ) ) |
| 30 | opelxpi | |- ( ( p e. X /\ q e. X ) -> <. p , q >. e. ( X X. X ) ) |
|
| 31 | 21 30 | syl | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> <. p , q >. e. ( X X. X ) ) |
| 32 | 31 26 | eleqtrrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> <. p , q >. e. dom D ) |
| 33 | fvimacnv | |- ( ( Fun D /\ <. p , q >. e. dom D ) -> ( ( D ` <. p , q >. ) e. ( 0 [,) a ) <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
|
| 34 | 20 32 33 | syl2anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( D ` <. p , q >. ) e. ( 0 [,) a ) <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
| 35 | 17 29 34 | 3bitr3d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. q , p >. e. ( `' D " ( 0 [,) a ) ) <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
| 36 | simpr | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> A = ( `' D " ( 0 [,) a ) ) ) |
|
| 37 | 36 | eleq2d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. q , p >. e. A <-> <. q , p >. e. ( `' D " ( 0 [,) a ) ) ) ) |
| 38 | 36 | eleq2d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. p , q >. e. A <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
| 39 | 35 37 38 | 3bitr4d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. q , p >. e. A <-> <. p , q >. e. A ) ) |
| 40 | eqid | |- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| 41 | 40 | elrnmpt | |- ( A e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) -> ( A e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) ) |
| 42 | 41 | ibi | |- ( A e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
| 43 | 42 1 | eleq2s | |- ( A e. F -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
| 44 | 43 | ad2antlr | |- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
| 45 | 39 44 | r19.29a | |- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) -> ( <. q , p >. e. A <-> <. p , q >. e. A ) ) |
| 46 | df-br | |- ( p `' A q <-> <. p , q >. e. `' A ) |
|
| 47 | vex | |- p e. _V |
|
| 48 | vex | |- q e. _V |
|
| 49 | 47 48 | opelcnv | |- ( <. p , q >. e. `' A <-> <. q , p >. e. A ) |
| 50 | 46 49 | bitri | |- ( p `' A q <-> <. q , p >. e. A ) |
| 51 | df-br | |- ( p A q <-> <. p , q >. e. A ) |
|
| 52 | 45 50 51 | 3bitr4g | |- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) -> ( p `' A q <-> p A q ) ) |
| 53 | 52 | 3impb | |- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ p e. X /\ q e. X ) -> ( p `' A q <-> p A q ) ) |
| 54 | 6 2 53 | eqbrrdva | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> `' A = A ) |