This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any element A of the filter base generated by the metric D , the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| Assertion | metustexhalf | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) → ∃ 𝑣 ∈ 𝐹 ( 𝑣 ∘ 𝑣 ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 2 | simp-4r | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 3 | simplr | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑎 ∈ ℝ+ ) | |
| 4 | 3 | rphalfcld | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑎 / 2 ) ∈ ℝ+ ) |
| 5 | eqidd | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) | |
| 6 | oveq2 | ⊢ ( 𝑏 = ( 𝑎 / 2 ) → ( 0 [,) 𝑏 ) = ( 0 [,) ( 𝑎 / 2 ) ) ) | |
| 7 | 6 | imaeq2d | ⊢ ( 𝑏 = ( 𝑎 / 2 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) |
| 8 | 7 | rspceeqv | ⊢ ( ( ( 𝑎 / 2 ) ∈ ℝ+ ∧ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) → ∃ 𝑏 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 9 | 4 5 8 | syl2anc | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ∃ 𝑏 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑎 = 𝑏 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑏 ) ) | |
| 11 | 10 | imaeq2d | ⊢ ( 𝑎 = 𝑏 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 12 | 11 | cbvmptv | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 13 | 12 | rneqi | ⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 14 | 1 13 | eqtri | ⊢ 𝐹 = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 15 | 14 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∈ 𝐹 ↔ ∃ 𝑏 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) |
| 16 | 15 | biimpar | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ∃ 𝑏 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∈ 𝐹 ) |
| 17 | 2 9 16 | syl2anc | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∈ 𝐹 ) |
| 18 | relco | ⊢ Rel ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) | |
| 19 | 18 | a1i | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → Rel ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) |
| 20 | cossxp | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ ( dom ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) × ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) | |
| 21 | cnvimass | ⊢ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ dom 𝐷 | |
| 22 | psmetf | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 23 | 21 22 | fssdm | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 24 | dmss | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ ( 𝑋 × 𝑋 ) → dom ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ dom ( 𝑋 × 𝑋 ) ) | |
| 25 | rnss | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ ( 𝑋 × 𝑋 ) → ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ ran ( 𝑋 × 𝑋 ) ) | |
| 26 | xpss12 | ⊢ ( ( dom ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ dom ( 𝑋 × 𝑋 ) ∧ ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ ran ( 𝑋 × 𝑋 ) ) → ( dom ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) × ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ ( dom ( 𝑋 × 𝑋 ) × ran ( 𝑋 × 𝑋 ) ) ) | |
| 27 | 24 25 26 | syl2anc | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ ( 𝑋 × 𝑋 ) → ( dom ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) × ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ ( dom ( 𝑋 × 𝑋 ) × ran ( 𝑋 × 𝑋 ) ) ) |
| 28 | 23 27 | syl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( dom ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) × ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ ( dom ( 𝑋 × 𝑋 ) × ran ( 𝑋 × 𝑋 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( dom ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) × ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ ( dom ( 𝑋 × 𝑋 ) × ran ( 𝑋 × 𝑋 ) ) ) |
| 30 | dmxp | ⊢ ( 𝑋 ≠ ∅ → dom ( 𝑋 × 𝑋 ) = 𝑋 ) | |
| 31 | rnxp | ⊢ ( 𝑋 ≠ ∅ → ran ( 𝑋 × 𝑋 ) = 𝑋 ) | |
| 32 | 30 31 | xpeq12d | ⊢ ( 𝑋 ≠ ∅ → ( dom ( 𝑋 × 𝑋 ) × ran ( 𝑋 × 𝑋 ) ) = ( 𝑋 × 𝑋 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( dom ( 𝑋 × 𝑋 ) × ran ( 𝑋 × 𝑋 ) ) = ( 𝑋 × 𝑋 ) ) |
| 34 | 29 33 | sseqtrd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( dom ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) × ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 35 | 20 34 | sstrid | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 36 | 35 | ad3antrrr | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 37 | 36 | sselda | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → 〈 𝑝 , 𝑞 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 38 | opelxp | ⊢ ( 〈 𝑝 , 𝑞 〉 ∈ ( 𝑋 × 𝑋 ) ↔ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) |
| 40 | simpll | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) | |
| 41 | simprl | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → 𝑝 ∈ 𝑋 ) | |
| 42 | simprr | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → 𝑞 ∈ 𝑋 ) | |
| 43 | simplr | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) | |
| 44 | simplll | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) | |
| 45 | 44 | simp1d | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 46 | 45 2 | syl | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
| 47 | 45 3 | syl | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑎 ∈ ℝ+ ) |
| 48 | 46 47 | jca | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ) |
| 49 | 44 | simp2d | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑝 ∈ 𝑋 ) |
| 50 | 44 | simp3d | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑞 ∈ 𝑋 ) |
| 51 | 48 49 50 | 3jca | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) |
| 52 | simplr | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑟 ∈ 𝑋 ) | |
| 53 | simprl | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ) | |
| 54 | simprr | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) | |
| 55 | simpll | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) | |
| 56 | 55 | simp1d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ) |
| 57 | 56 | simpld | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
| 58 | 22 | ffund | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → Fun 𝐷 ) |
| 59 | 57 58 | syl | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → Fun 𝐷 ) |
| 60 | 55 | simp2d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑝 ∈ 𝑋 ) |
| 61 | 55 | simp3d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑞 ∈ 𝑋 ) |
| 62 | 60 61 | opelxpd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 〈 𝑝 , 𝑞 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 63 | 22 | fdmd | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 64 | 57 63 | syl | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 65 | 62 64 | eleqtrrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 〈 𝑝 , 𝑞 〉 ∈ dom 𝐷 ) |
| 66 | 0xr | ⊢ 0 ∈ ℝ* | |
| 67 | 66 | a1i | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 0 ∈ ℝ* ) |
| 68 | 56 | simprd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑎 ∈ ℝ+ ) |
| 69 | 68 | rpxrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑎 ∈ ℝ* ) |
| 70 | 57 22 | syl | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 71 | 70 62 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ℝ* ) |
| 72 | psmetge0 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) → 0 ≤ ( 𝑝 𝐷 𝑞 ) ) | |
| 73 | 57 60 61 72 | syl3anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 0 ≤ ( 𝑝 𝐷 𝑞 ) ) |
| 74 | df-ov | ⊢ ( 𝑝 𝐷 𝑞 ) = ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) | |
| 75 | 73 74 | breqtrdi | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 0 ≤ ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ) |
| 76 | 74 71 | eqeltrid | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑝 𝐷 𝑞 ) ∈ ℝ* ) |
| 77 | 0red | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 0 ∈ ℝ ) | |
| 78 | 68 | rpred | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑎 ∈ ℝ ) |
| 79 | 78 | rehalfcld | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑎 / 2 ) ∈ ℝ ) |
| 80 | 79 | rexrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑎 / 2 ) ∈ ℝ* ) |
| 81 | df-ov | ⊢ ( 𝑝 𝐷 𝑟 ) = ( 𝐷 ‘ 〈 𝑝 , 𝑟 〉 ) | |
| 82 | simplr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑟 ∈ 𝑋 ) | |
| 83 | 60 82 | opelxpd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 〈 𝑝 , 𝑟 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 84 | 83 64 | eleqtrrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 〈 𝑝 , 𝑟 〉 ∈ dom 𝐷 ) |
| 85 | simprl | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ) | |
| 86 | df-br | ⊢ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ↔ 〈 𝑝 , 𝑟 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) | |
| 87 | 85 86 | sylib | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 〈 𝑝 , 𝑟 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) |
| 88 | fvimacnv | ⊢ ( ( Fun 𝐷 ∧ 〈 𝑝 , 𝑟 〉 ∈ dom 𝐷 ) → ( ( 𝐷 ‘ 〈 𝑝 , 𝑟 〉 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ↔ 〈 𝑝 , 𝑟 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) | |
| 89 | 88 | biimpar | ⊢ ( ( ( Fun 𝐷 ∧ 〈 𝑝 , 𝑟 〉 ∈ dom 𝐷 ) ∧ 〈 𝑝 , 𝑟 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) → ( 𝐷 ‘ 〈 𝑝 , 𝑟 〉 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) |
| 90 | 59 84 87 89 | syl21anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝐷 ‘ 〈 𝑝 , 𝑟 〉 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) |
| 91 | 81 90 | eqeltrid | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑝 𝐷 𝑟 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) |
| 92 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑎 / 2 ) ∈ ℝ* ) → ( ( 𝑝 𝐷 𝑟 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ↔ ( ( 𝑝 𝐷 𝑟 ) ∈ ℝ ∧ 0 ≤ ( 𝑝 𝐷 𝑟 ) ∧ ( 𝑝 𝐷 𝑟 ) < ( 𝑎 / 2 ) ) ) ) | |
| 93 | 92 | biimpa | ⊢ ( ( ( 0 ∈ ℝ ∧ ( 𝑎 / 2 ) ∈ ℝ* ) ∧ ( 𝑝 𝐷 𝑟 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) → ( ( 𝑝 𝐷 𝑟 ) ∈ ℝ ∧ 0 ≤ ( 𝑝 𝐷 𝑟 ) ∧ ( 𝑝 𝐷 𝑟 ) < ( 𝑎 / 2 ) ) ) |
| 94 | 93 | simp1d | ⊢ ( ( ( 0 ∈ ℝ ∧ ( 𝑎 / 2 ) ∈ ℝ* ) ∧ ( 𝑝 𝐷 𝑟 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) → ( 𝑝 𝐷 𝑟 ) ∈ ℝ ) |
| 95 | 77 80 91 94 | syl21anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑝 𝐷 𝑟 ) ∈ ℝ ) |
| 96 | df-ov | ⊢ ( 𝑟 𝐷 𝑞 ) = ( 𝐷 ‘ 〈 𝑟 , 𝑞 〉 ) | |
| 97 | 82 61 | opelxpd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 〈 𝑟 , 𝑞 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 98 | 97 64 | eleqtrrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 〈 𝑟 , 𝑞 〉 ∈ dom 𝐷 ) |
| 99 | simprr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) | |
| 100 | df-br | ⊢ ( 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ↔ 〈 𝑟 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) | |
| 101 | 99 100 | sylib | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 〈 𝑟 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) |
| 102 | fvimacnv | ⊢ ( ( Fun 𝐷 ∧ 〈 𝑟 , 𝑞 〉 ∈ dom 𝐷 ) → ( ( 𝐷 ‘ 〈 𝑟 , 𝑞 〉 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ↔ 〈 𝑟 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) | |
| 103 | 102 | biimpar | ⊢ ( ( ( Fun 𝐷 ∧ 〈 𝑟 , 𝑞 〉 ∈ dom 𝐷 ) ∧ 〈 𝑟 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) → ( 𝐷 ‘ 〈 𝑟 , 𝑞 〉 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) |
| 104 | 59 98 101 103 | syl21anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝐷 ‘ 〈 𝑟 , 𝑞 〉 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) |
| 105 | 96 104 | eqeltrid | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑟 𝐷 𝑞 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) |
| 106 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑎 / 2 ) ∈ ℝ* ) → ( ( 𝑟 𝐷 𝑞 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ↔ ( ( 𝑟 𝐷 𝑞 ) ∈ ℝ ∧ 0 ≤ ( 𝑟 𝐷 𝑞 ) ∧ ( 𝑟 𝐷 𝑞 ) < ( 𝑎 / 2 ) ) ) ) | |
| 107 | 106 | biimpa | ⊢ ( ( ( 0 ∈ ℝ ∧ ( 𝑎 / 2 ) ∈ ℝ* ) ∧ ( 𝑟 𝐷 𝑞 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) → ( ( 𝑟 𝐷 𝑞 ) ∈ ℝ ∧ 0 ≤ ( 𝑟 𝐷 𝑞 ) ∧ ( 𝑟 𝐷 𝑞 ) < ( 𝑎 / 2 ) ) ) |
| 108 | 107 | simp1d | ⊢ ( ( ( 0 ∈ ℝ ∧ ( 𝑎 / 2 ) ∈ ℝ* ) ∧ ( 𝑟 𝐷 𝑞 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) → ( 𝑟 𝐷 𝑞 ) ∈ ℝ ) |
| 109 | 77 80 105 108 | syl21anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑟 𝐷 𝑞 ) ∈ ℝ ) |
| 110 | 95 109 | rexaddd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( 𝑝 𝐷 𝑟 ) +𝑒 ( 𝑟 𝐷 𝑞 ) ) = ( ( 𝑝 𝐷 𝑟 ) + ( 𝑟 𝐷 𝑞 ) ) ) |
| 111 | 95 109 | readdcld | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( 𝑝 𝐷 𝑟 ) + ( 𝑟 𝐷 𝑞 ) ) ∈ ℝ ) |
| 112 | 110 111 | eqeltrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( 𝑝 𝐷 𝑟 ) +𝑒 ( 𝑟 𝐷 𝑞 ) ) ∈ ℝ ) |
| 113 | 112 | rexrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( 𝑝 𝐷 𝑟 ) +𝑒 ( 𝑟 𝐷 𝑞 ) ) ∈ ℝ* ) |
| 114 | psmettri | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ) ) → ( 𝑝 𝐷 𝑞 ) ≤ ( ( 𝑝 𝐷 𝑟 ) +𝑒 ( 𝑟 𝐷 𝑞 ) ) ) | |
| 115 | 57 60 61 82 114 | syl13anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑝 𝐷 𝑞 ) ≤ ( ( 𝑝 𝐷 𝑟 ) +𝑒 ( 𝑟 𝐷 𝑞 ) ) ) |
| 116 | 93 | simp3d | ⊢ ( ( ( 0 ∈ ℝ ∧ ( 𝑎 / 2 ) ∈ ℝ* ) ∧ ( 𝑝 𝐷 𝑟 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) → ( 𝑝 𝐷 𝑟 ) < ( 𝑎 / 2 ) ) |
| 117 | 77 80 91 116 | syl21anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑝 𝐷 𝑟 ) < ( 𝑎 / 2 ) ) |
| 118 | 107 | simp3d | ⊢ ( ( ( 0 ∈ ℝ ∧ ( 𝑎 / 2 ) ∈ ℝ* ) ∧ ( 𝑟 𝐷 𝑞 ) ∈ ( 0 [,) ( 𝑎 / 2 ) ) ) → ( 𝑟 𝐷 𝑞 ) < ( 𝑎 / 2 ) ) |
| 119 | 77 80 105 118 | syl21anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑟 𝐷 𝑞 ) < ( 𝑎 / 2 ) ) |
| 120 | 95 109 78 117 119 | lt2halvesd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( 𝑝 𝐷 𝑟 ) + ( 𝑟 𝐷 𝑞 ) ) < 𝑎 ) |
| 121 | 110 120 | eqbrtrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( ( 𝑝 𝐷 𝑟 ) +𝑒 ( 𝑟 𝐷 𝑞 ) ) < 𝑎 ) |
| 122 | 76 113 69 115 121 | xrlelttrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑝 𝐷 𝑞 ) < 𝑎 ) |
| 123 | 74 122 | eqbrtrrid | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) < 𝑎 ) |
| 124 | 67 69 71 75 123 | elicod | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ) |
| 125 | fvimacnv | ⊢ ( ( Fun 𝐷 ∧ 〈 𝑝 , 𝑞 〉 ∈ dom 𝐷 ) → ( ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ↔ 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) | |
| 126 | 125 | biimpa | ⊢ ( ( ( Fun 𝐷 ∧ 〈 𝑝 , 𝑞 〉 ∈ dom 𝐷 ) ∧ ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ) → 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 127 | df-br | ⊢ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) 𝑞 ↔ 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 128 | 126 127 | sylibr | ⊢ ( ( ( Fun 𝐷 ∧ 〈 𝑝 , 𝑞 〉 ∈ dom 𝐷 ) ∧ ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ) → 𝑝 ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) 𝑞 ) |
| 129 | 59 65 124 128 | syl21anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑝 ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) 𝑞 ) |
| 130 | 51 52 53 54 129 | syl22anc | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑝 ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) 𝑞 ) |
| 131 | 45 | simprd | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 132 | 131 | breqd | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → ( 𝑝 𝐴 𝑞 ↔ 𝑝 ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) 𝑞 ) ) |
| 133 | 130 132 | mpbird | ⊢ ( ( ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ 𝑟 ∈ 𝑋 ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑝 𝐴 𝑞 ) |
| 134 | simpr | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) | |
| 135 | df-br | ⊢ ( 𝑝 ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) 𝑞 ↔ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) | |
| 136 | 134 135 | sylibr | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → 𝑝 ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) 𝑞 ) |
| 137 | vex | ⊢ 𝑝 ∈ V | |
| 138 | vex | ⊢ 𝑞 ∈ V | |
| 139 | 137 138 | brco | ⊢ ( 𝑝 ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) 𝑞 ↔ ∃ 𝑟 ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) |
| 140 | 136 139 | sylib | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → ∃ 𝑟 ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) |
| 141 | 23 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 142 | 141 25 | syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ ran ( 𝑋 × 𝑋 ) ) |
| 143 | 31 | adantr | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ran ( 𝑋 × 𝑋 ) = 𝑋 ) |
| 144 | 142 143 | sseqtrd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ 𝑋 ) |
| 145 | 144 | adantr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ) → ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ⊆ 𝑋 ) |
| 146 | vex | ⊢ 𝑟 ∈ V | |
| 147 | 137 146 | brelrn | ⊢ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 → 𝑟 ∈ ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) |
| 148 | 147 | adantl | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ) → 𝑟 ∈ ran ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) |
| 149 | 145 148 | sseldd | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ) → 𝑟 ∈ 𝑋 ) |
| 150 | 149 | adantrr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) → 𝑟 ∈ 𝑋 ) |
| 151 | 150 | ex | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) → 𝑟 ∈ 𝑋 ) ) |
| 152 | 151 | ancrd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) → ( 𝑟 ∈ 𝑋 ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) ) ) |
| 153 | 152 | eximdv | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ∃ 𝑟 ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) → ∃ 𝑟 ( 𝑟 ∈ 𝑋 ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) ) ) |
| 154 | 153 | ad3antrrr | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ∃ 𝑟 ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) → ∃ 𝑟 ( 𝑟 ∈ 𝑋 ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) ) ) |
| 155 | 154 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) → ( ∃ 𝑟 ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) → ∃ 𝑟 ( 𝑟 ∈ 𝑋 ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) ) ) |
| 156 | 155 | adantr | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → ( ∃ 𝑟 ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) → ∃ 𝑟 ( 𝑟 ∈ 𝑋 ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) ) ) |
| 157 | 140 156 | mpd | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → ∃ 𝑟 ( 𝑟 ∈ 𝑋 ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) ) |
| 158 | df-rex | ⊢ ( ∃ 𝑟 ∈ 𝑋 ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ↔ ∃ 𝑟 ( 𝑟 ∈ 𝑋 ∧ ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) ) | |
| 159 | 157 158 | sylibr | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → ∃ 𝑟 ∈ 𝑋 ( 𝑝 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑟 ∧ 𝑟 ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) 𝑞 ) ) |
| 160 | 133 159 | r19.29a | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → 𝑝 𝐴 𝑞 ) |
| 161 | df-br | ⊢ ( 𝑝 𝐴 𝑞 ↔ 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) | |
| 162 | 160 161 | sylib | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) |
| 163 | 40 41 42 43 162 | syl31anc | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) |
| 164 | 39 163 | mpdan | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) → 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) |
| 165 | 164 | ex | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 〈 𝑝 , 𝑞 〉 ∈ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) → 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) ) |
| 166 | 19 165 | relssdv | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ 𝐴 ) |
| 167 | id | ⊢ ( 𝑣 = ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) → 𝑣 = ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) | |
| 168 | 167 167 | coeq12d | ⊢ ( 𝑣 = ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) → ( 𝑣 ∘ 𝑣 ) = ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ) |
| 169 | 168 | sseq1d | ⊢ ( 𝑣 = ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) → ( ( 𝑣 ∘ 𝑣 ) ⊆ 𝐴 ↔ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ 𝐴 ) ) |
| 170 | 169 | rspcev | ⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∈ 𝐹 ∧ ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ∘ ( ◡ 𝐷 “ ( 0 [,) ( 𝑎 / 2 ) ) ) ) ⊆ 𝐴 ) → ∃ 𝑣 ∈ 𝐹 ( 𝑣 ∘ 𝑣 ) ⊆ 𝐴 ) |
| 171 | 17 166 170 | syl2anc | ⊢ ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ∃ 𝑣 ∈ 𝐹 ( 𝑣 ∘ 𝑣 ) ⊆ 𝐴 ) |
| 172 | 1 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐴 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 173 | 172 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐴 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 174 | 173 | biimpa | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) → ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 175 | 171 174 | r19.29a | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝐹 ) → ∃ 𝑣 ∈ 𝐹 ( 𝑣 ∘ 𝑣 ) ⊆ 𝐴 ) |