This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqbrrdva.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐶 × 𝐷 ) ) | |
| eqbrrdva.2 | ⊢ ( 𝜑 → 𝐵 ⊆ ( 𝐶 × 𝐷 ) ) | ||
| eqbrrdva.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | ||
| Assertion | eqbrrdva | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdva.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐶 × 𝐷 ) ) | |
| 2 | eqbrrdva.2 | ⊢ ( 𝜑 → 𝐵 ⊆ ( 𝐶 × 𝐷 ) ) | |
| 3 | eqbrrdva.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | |
| 4 | xpss | ⊢ ( 𝐶 × 𝐷 ) ⊆ ( V × V ) | |
| 5 | 1 4 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ( V × V ) ) |
| 6 | df-rel | ⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝜑 → Rel 𝐴 ) |
| 8 | 2 4 | sstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ( V × V ) ) |
| 9 | df-rel | ⊢ ( Rel 𝐵 ↔ 𝐵 ⊆ ( V × V ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝜑 → Rel 𝐵 ) |
| 11 | 1 | ssbrd | ⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 → 𝑥 ( 𝐶 × 𝐷 ) 𝑦 ) ) |
| 12 | brxp | ⊢ ( 𝑥 ( 𝐶 × 𝐷 ) 𝑦 ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) | |
| 13 | 11 12 | imbitrdi | ⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 → ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 14 | 2 | ssbrd | ⊢ ( 𝜑 → ( 𝑥 𝐵 𝑦 → 𝑥 ( 𝐶 × 𝐷 ) 𝑦 ) ) |
| 15 | 14 12 | imbitrdi | ⊢ ( 𝜑 → ( 𝑥 𝐵 𝑦 → ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 16 | 3 | 3expib | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) ) |
| 17 | 13 15 16 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) |
| 18 | 7 10 17 | eqbrrdv | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |