This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the uniform structure generated by a metric D (Contributed by Thierry Arnoux, 24-Jan-2018) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metuel2.u | ⊢ 𝑈 = ( metUnif ‘ 𝐷 ) | |
| Assertion | metuel2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ 𝑈 ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metuel2.u | ⊢ 𝑈 = ( metUnif ‘ 𝐷 ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝑉 ∈ 𝑈 ↔ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ) |
| 3 | 2 | a1i | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ 𝑈 ↔ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ) ) |
| 4 | metuel | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ) ) | |
| 5 | oveq2 | ⊢ ( 𝑎 = 𝑑 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑑 ) ) | |
| 6 | 5 | imaeq2d | ⊢ ( 𝑎 = 𝑑 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
| 7 | 6 | cbvmptv | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
| 8 | 7 | elrnmpt | ⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
| 9 | 8 | elv | ⊢ ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
| 10 | 9 | anbi1i | ⊢ ( ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ∃ 𝑑 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
| 11 | r19.41v | ⊢ ( ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ∃ 𝑑 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) | |
| 12 | 10 11 | bitr4i | ⊢ ( ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑤 ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑤 ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
| 14 | df-rex | ⊢ ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ↔ ∃ 𝑤 ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤 ⊆ 𝑉 ) ) | |
| 15 | rexcom4 | ⊢ ( ∃ 𝑑 ∈ ℝ+ ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑤 ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ↔ ∃ 𝑑 ∈ ℝ+ ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
| 17 | cnvexg | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) | |
| 18 | imaexg | ⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V ) | |
| 19 | sseq1 | ⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → ( 𝑤 ⊆ 𝑉 ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) | |
| 20 | 19 | ceqsexgv | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V → ( ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
| 21 | 17 18 20 | 3syl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
| 22 | 21 | rexbidv | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑑 ∈ ℝ+ ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑑 ∈ ℝ+ ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
| 24 | 16 23 | bitrid | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ↔ ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
| 25 | cnvimass | ⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ dom 𝐷 | |
| 26 | simpll | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 27 | psmetf | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 28 | fdm | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom 𝐷 = ( 𝑋 × 𝑋 ) ) | |
| 29 | 26 27 28 | 3syl | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 30 | 25 29 | sseqtrid | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 31 | ssrel2 | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ ( 𝑋 × 𝑋 ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) ) |
| 33 | simplr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 34 | simpr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 35 | 33 34 | opelxpd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 36 | 35 | biantrurd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) ) ) |
| 37 | psmetcl | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) | |
| 38 | 37 | ad5ant145 | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) |
| 39 | 38 | 3biant1d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) |
| 40 | psmetge0 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) ) | |
| 41 | 40 | biantrurd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) |
| 42 | 41 | ad5ant145 | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) |
| 43 | 0xr | ⊢ 0 ∈ ℝ* | |
| 44 | simpllr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑑 ∈ ℝ+ ) | |
| 45 | 44 | rpxrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑑 ∈ ℝ* ) |
| 46 | elico1 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑑 ∈ ℝ* ) → ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) | |
| 47 | 43 45 46 | sylancr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) |
| 48 | 39 42 47 | 3bitr4d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ) ) |
| 49 | df-ov | ⊢ ( 𝑥 𝐷 𝑦 ) = ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 50 | 49 | eleq1i | ⊢ ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ↔ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) |
| 51 | 48 50 | bitrdi | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) ) |
| 52 | simp-4l | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 53 | ffn | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝐷 Fn ( 𝑋 × 𝑋 ) ) | |
| 54 | elpreima | ⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) ) ) | |
| 55 | 52 27 53 54 | 4syl | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) ) ) |
| 56 | 36 51 55 | 3bitr4d | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
| 57 | 56 | anasss | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
| 58 | df-br | ⊢ ( 𝑥 𝑉 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) | |
| 59 | 58 | a1i | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑉 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) |
| 60 | 57 59 | imbi12d | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) ) |
| 61 | 60 | 2ralbidva | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) ) |
| 62 | 32 61 | bitr4d | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) |
| 63 | 62 | rexbidva | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) |
| 64 | 24 63 | bitrd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) |
| 65 | 64 | pm5.32da | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) ) |
| 66 | 65 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) ) |
| 67 | 3 4 66 | 3bitrd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ 𝑈 ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) ) |