This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "section" image of an entourage at a point P always contains a ball (centered on this point). (Contributed by Thierry Arnoux, 8-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metustbl | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑎 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 2 | simp3 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) | |
| 3 | simpr | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ) ∧ 𝑤 ⊆ 𝑉 ) → 𝑤 ⊆ 𝑉 ) | |
| 4 | eqid | ⊢ ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) = ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) | |
| 5 | 4 | elrnmpt | ⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ↔ ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ) |
| 6 | 5 | elv | ⊢ ( 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ↔ ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) |
| 7 | 6 | biimpi | ⊢ ( 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) → ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) |
| 8 | 7 | ad2antlr | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ) ∧ 𝑤 ⊆ 𝑉 ) → ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) |
| 9 | sseq1 | ⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) → ( 𝑤 ⊆ 𝑉 ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) ) | |
| 10 | 9 | biimpcd | ⊢ ( 𝑤 ⊆ 𝑉 → ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) ) |
| 11 | 10 | reximdv | ⊢ ( 𝑤 ⊆ 𝑉 → ( ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) → ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) ) |
| 12 | 3 8 11 | sylc | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ) ∧ 𝑤 ⊆ 𝑉 ) → ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) |
| 13 | 2 | ne0d | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 14 | simp2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑉 ∈ ( metUnif ‘ 𝐷 ) ) | |
| 15 | metuel | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) 𝑤 ⊆ 𝑉 ) ) ) | |
| 16 | 15 | simplbda | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ) → ∃ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) 𝑤 ⊆ 𝑉 ) |
| 17 | 13 1 14 16 | syl21anc | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) 𝑤 ⊆ 𝑉 ) |
| 18 | 12 17 | r19.29a | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) |
| 19 | imass1 | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 → ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) | |
| 20 | 19 | reximi | ⊢ ( ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 → ∃ 𝑟 ∈ ℝ+ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) |
| 21 | blval2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ) | |
| 22 | 21 | sseq1d | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
| 23 | 22 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
| 24 | 23 | rexbidva | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ↔ ∃ 𝑟 ∈ ℝ+ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
| 25 | 20 24 | imbitrrid | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
| 26 | 25 | imp | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) |
| 27 | 1 2 18 26 | syl21anc | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) |
| 28 | blssexps | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑎 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ ( 𝑉 “ { 𝑃 } ) ) ↔ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) | |
| 29 | 28 | 3adant2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑎 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ ( 𝑉 “ { 𝑃 } ) ) ↔ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
| 30 | 27 29 | mpbird | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑎 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |