This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the uniform structure generated by a metric D (Contributed by Thierry Arnoux, 24-Jan-2018) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metuel2.u | |- U = ( metUnif ` D ) |
|
| Assertion | metuel2 | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. U <-> ( V C_ ( X X. X ) /\ E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metuel2.u | |- U = ( metUnif ` D ) |
|
| 2 | 1 | eleq2i | |- ( V e. U <-> V e. ( metUnif ` D ) ) |
| 3 | 2 | a1i | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. U <-> V e. ( metUnif ` D ) ) ) |
| 4 | metuel | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |
|
| 5 | oveq2 | |- ( a = d -> ( 0 [,) a ) = ( 0 [,) d ) ) |
|
| 6 | 5 | imaeq2d | |- ( a = d -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) d ) ) ) |
| 7 | 6 | cbvmptv | |- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( d e. RR+ |-> ( `' D " ( 0 [,) d ) ) ) |
| 8 | 7 | elrnmpt | |- ( w e. _V -> ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. d e. RR+ w = ( `' D " ( 0 [,) d ) ) ) ) |
| 9 | 8 | elv | |- ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. d e. RR+ w = ( `' D " ( 0 [,) d ) ) ) |
| 10 | 9 | anbi1i | |- ( ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) /\ w C_ V ) <-> ( E. d e. RR+ w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
| 11 | r19.41v | |- ( E. d e. RR+ ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> ( E. d e. RR+ w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
|
| 12 | 10 11 | bitr4i | |- ( ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) /\ w C_ V ) <-> E. d e. RR+ ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
| 13 | 12 | exbii | |- ( E. w ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) /\ w C_ V ) <-> E. w E. d e. RR+ ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
| 14 | df-rex | |- ( E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V <-> E. w ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) /\ w C_ V ) ) |
|
| 15 | rexcom4 | |- ( E. d e. RR+ E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> E. w E. d e. RR+ ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
|
| 16 | 13 14 15 | 3bitr4i | |- ( E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V <-> E. d e. RR+ E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
| 17 | cnvexg | |- ( D e. ( PsMet ` X ) -> `' D e. _V ) |
|
| 18 | imaexg | |- ( `' D e. _V -> ( `' D " ( 0 [,) d ) ) e. _V ) |
|
| 19 | sseq1 | |- ( w = ( `' D " ( 0 [,) d ) ) -> ( w C_ V <-> ( `' D " ( 0 [,) d ) ) C_ V ) ) |
|
| 20 | 19 | ceqsexgv | |- ( ( `' D " ( 0 [,) d ) ) e. _V -> ( E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> ( `' D " ( 0 [,) d ) ) C_ V ) ) |
| 21 | 17 18 20 | 3syl | |- ( D e. ( PsMet ` X ) -> ( E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> ( `' D " ( 0 [,) d ) ) C_ V ) ) |
| 22 | 21 | rexbidv | |- ( D e. ( PsMet ` X ) -> ( E. d e. RR+ E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> E. d e. RR+ ( `' D " ( 0 [,) d ) ) C_ V ) ) |
| 23 | 22 | adantr | |- ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) -> ( E. d e. RR+ E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> E. d e. RR+ ( `' D " ( 0 [,) d ) ) C_ V ) ) |
| 24 | 16 23 | bitrid | |- ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) -> ( E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V <-> E. d e. RR+ ( `' D " ( 0 [,) d ) ) C_ V ) ) |
| 25 | cnvimass | |- ( `' D " ( 0 [,) d ) ) C_ dom D |
|
| 26 | simpll | |- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> D e. ( PsMet ` X ) ) |
|
| 27 | psmetf | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 28 | fdm | |- ( D : ( X X. X ) --> RR* -> dom D = ( X X. X ) ) |
|
| 29 | 26 27 28 | 3syl | |- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> dom D = ( X X. X ) ) |
| 30 | 25 29 | sseqtrid | |- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> ( `' D " ( 0 [,) d ) ) C_ ( X X. X ) ) |
| 31 | ssrel2 | |- ( ( `' D " ( 0 [,) d ) ) C_ ( X X. X ) -> ( ( `' D " ( 0 [,) d ) ) C_ V <-> A. x e. X A. y e. X ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) -> <. x , y >. e. V ) ) ) |
|
| 32 | 30 31 | syl | |- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> ( ( `' D " ( 0 [,) d ) ) C_ V <-> A. x e. X A. y e. X ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) -> <. x , y >. e. V ) ) ) |
| 33 | simplr | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> x e. X ) |
|
| 34 | simpr | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> y e. X ) |
|
| 35 | 33 34 | opelxpd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> <. x , y >. e. ( X X. X ) ) |
| 36 | 35 | biantrurd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( D ` <. x , y >. ) e. ( 0 [,) d ) <-> ( <. x , y >. e. ( X X. X ) /\ ( D ` <. x , y >. ) e. ( 0 [,) d ) ) ) ) |
| 37 | psmetcl | |- ( ( D e. ( PsMet ` X ) /\ x e. X /\ y e. X ) -> ( x D y ) e. RR* ) |
|
| 38 | 37 | ad5ant145 | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( x D y ) e. RR* ) |
| 39 | 38 | 3biant1d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( 0 <_ ( x D y ) /\ ( x D y ) < d ) <-> ( ( x D y ) e. RR* /\ 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
| 40 | psmetge0 | |- ( ( D e. ( PsMet ` X ) /\ x e. X /\ y e. X ) -> 0 <_ ( x D y ) ) |
|
| 41 | 40 | biantrurd | |- ( ( D e. ( PsMet ` X ) /\ x e. X /\ y e. X ) -> ( ( x D y ) < d <-> ( 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
| 42 | 41 | ad5ant145 | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) < d <-> ( 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
| 43 | 0xr | |- 0 e. RR* |
|
| 44 | simpllr | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> d e. RR+ ) |
|
| 45 | 44 | rpxrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> d e. RR* ) |
| 46 | elico1 | |- ( ( 0 e. RR* /\ d e. RR* ) -> ( ( x D y ) e. ( 0 [,) d ) <-> ( ( x D y ) e. RR* /\ 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
|
| 47 | 43 45 46 | sylancr | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) e. ( 0 [,) d ) <-> ( ( x D y ) e. RR* /\ 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
| 48 | 39 42 47 | 3bitr4d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) < d <-> ( x D y ) e. ( 0 [,) d ) ) ) |
| 49 | df-ov | |- ( x D y ) = ( D ` <. x , y >. ) |
|
| 50 | 49 | eleq1i | |- ( ( x D y ) e. ( 0 [,) d ) <-> ( D ` <. x , y >. ) e. ( 0 [,) d ) ) |
| 51 | 48 50 | bitrdi | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) < d <-> ( D ` <. x , y >. ) e. ( 0 [,) d ) ) ) |
| 52 | simp-4l | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> D e. ( PsMet ` X ) ) |
|
| 53 | ffn | |- ( D : ( X X. X ) --> RR* -> D Fn ( X X. X ) ) |
|
| 54 | elpreima | |- ( D Fn ( X X. X ) -> ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) <-> ( <. x , y >. e. ( X X. X ) /\ ( D ` <. x , y >. ) e. ( 0 [,) d ) ) ) ) |
|
| 55 | 52 27 53 54 | 4syl | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) <-> ( <. x , y >. e. ( X X. X ) /\ ( D ` <. x , y >. ) e. ( 0 [,) d ) ) ) ) |
| 56 | 36 51 55 | 3bitr4d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) < d <-> <. x , y >. e. ( `' D " ( 0 [,) d ) ) ) ) |
| 57 | 56 | anasss | |- ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( ( x D y ) < d <-> <. x , y >. e. ( `' D " ( 0 [,) d ) ) ) ) |
| 58 | df-br | |- ( x V y <-> <. x , y >. e. V ) |
|
| 59 | 58 | a1i | |- ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( x V y <-> <. x , y >. e. V ) ) |
| 60 | 57 59 | imbi12d | |- ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( x D y ) < d -> x V y ) <-> ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) -> <. x , y >. e. V ) ) ) |
| 61 | 60 | 2ralbidva | |- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> ( A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) <-> A. x e. X A. y e. X ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) -> <. x , y >. e. V ) ) ) |
| 62 | 32 61 | bitr4d | |- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> ( ( `' D " ( 0 [,) d ) ) C_ V <-> A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) |
| 63 | 62 | rexbidva | |- ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) -> ( E. d e. RR+ ( `' D " ( 0 [,) d ) ) C_ V <-> E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) |
| 64 | 24 63 | bitrd | |- ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) -> ( E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V <-> E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) |
| 65 | 64 | pm5.32da | |- ( D e. ( PsMet ` X ) -> ( ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) <-> ( V C_ ( X X. X ) /\ E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) ) |
| 66 | 65 | adantl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) <-> ( V C_ ( X X. X ) /\ E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) ) |
| 67 | 3 4 66 | 3bitrd | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. U <-> ( V C_ ( X X. X ) /\ E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) ) |