This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | methaus.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | met1stc | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ 1stω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | methaus.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 3 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 4 | 3 | eleq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
| 5 | 4 | biimpar | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ 𝑋 ) |
| 6 | simpll | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 7 | simplr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ 𝑋 ) | |
| 8 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ ) |
| 10 | 9 | rpreccld | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 11 | 10 | rpxrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ* ) |
| 12 | 1 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 1 / 𝑛 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽 ) |
| 13 | 6 7 11 12 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽 ) |
| 14 | 13 | fmpttd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) : ℕ ⟶ 𝐽 ) |
| 15 | 14 | frnd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ⊆ 𝐽 ) |
| 16 | nnex | ⊢ ℕ ∈ V | |
| 17 | 16 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ V |
| 18 | 17 | rnex | ⊢ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ V |
| 19 | 18 | elpw | ⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ 𝒫 𝐽 ↔ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ⊆ 𝐽 ) |
| 20 | 15 19 | sylibr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ 𝒫 𝐽 ) |
| 21 | omelon | ⊢ ω ∈ On | |
| 22 | nnenom | ⊢ ℕ ≈ ω | |
| 23 | 22 | ensymi | ⊢ ω ≈ ℕ |
| 24 | isnumi | ⊢ ( ( ω ∈ On ∧ ω ≈ ℕ ) → ℕ ∈ dom card ) | |
| 25 | 21 23 24 | mp2an | ⊢ ℕ ∈ dom card |
| 26 | ovex | ⊢ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ V | |
| 27 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) | |
| 28 | 26 27 | fnmpti | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) Fn ℕ |
| 29 | dffn4 | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) Fn ℕ ↔ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) : ℕ –onto→ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ) | |
| 30 | 28 29 | mpbi | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) : ℕ –onto→ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) |
| 31 | fodomnum | ⊢ ( ℕ ∈ dom card → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) : ℕ –onto→ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ℕ ) ) | |
| 32 | 25 30 31 | mp2 | ⊢ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ℕ |
| 33 | domentr | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ℕ ∧ ℕ ≈ ω ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ) | |
| 34 | 32 22 33 | mp2an | ⊢ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω |
| 35 | 34 | a1i | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ) |
| 36 | simpll | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 37 | simprl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ∈ 𝐽 ) | |
| 38 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑧 ) | |
| 39 | 1 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
| 40 | 36 37 38 39 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
| 41 | simp-4l | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 42 | simp-4r | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑥 ∈ 𝑋 ) | |
| 43 | simprl | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑦 ∈ ℕ ) | |
| 44 | 43 | nnrpd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑦 ∈ ℝ+ ) |
| 45 | 44 | rpreccld | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) ∈ ℝ+ ) |
| 46 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 1 / 𝑦 ) ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) | |
| 47 | 41 42 45 46 | syl3anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) |
| 48 | 45 | rpxrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) ∈ ℝ* ) |
| 49 | simplrl | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑟 ∈ ℝ+ ) | |
| 50 | 49 | rpxrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑟 ∈ ℝ* ) |
| 51 | nnrecre | ⊢ ( 𝑦 ∈ ℕ → ( 1 / 𝑦 ) ∈ ℝ ) | |
| 52 | 51 | ad2antrl | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) ∈ ℝ ) |
| 53 | 49 | rpred | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑟 ∈ ℝ ) |
| 54 | simprr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) < 𝑟 ) | |
| 55 | 52 53 54 | ltled | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) ≤ 𝑟 ) |
| 56 | ssbl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 1 / 𝑦 ) ∈ ℝ* ∧ 𝑟 ∈ ℝ* ) ∧ ( 1 / 𝑦 ) ≤ 𝑟 ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 57 | 41 42 48 50 55 56 | syl221anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 58 | simplrr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) | |
| 59 | 57 58 | sstrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) |
| 60 | 47 59 | jca | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) |
| 61 | elrp | ⊢ ( 𝑟 ∈ ℝ+ ↔ ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) ) | |
| 62 | nnrecl | ⊢ ( ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) → ∃ 𝑦 ∈ ℕ ( 1 / 𝑦 ) < 𝑟 ) | |
| 63 | 61 62 | sylbi | ⊢ ( 𝑟 ∈ ℝ+ → ∃ 𝑦 ∈ ℕ ( 1 / 𝑦 ) < 𝑟 ) |
| 64 | 63 | ad2antrl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ∃ 𝑦 ∈ ℕ ( 1 / 𝑦 ) < 𝑟 ) |
| 65 | 60 64 | reximddv | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ∃ 𝑦 ∈ ℕ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) |
| 66 | 40 65 | rexlimddv | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑦 ∈ ℕ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) |
| 67 | ovexd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∈ V ) | |
| 68 | vex | ⊢ 𝑤 ∈ V | |
| 69 | oveq2 | ⊢ ( 𝑛 = 𝑦 → ( 1 / 𝑛 ) = ( 1 / 𝑦 ) ) | |
| 70 | 69 | oveq2d | ⊢ ( 𝑛 = 𝑦 → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) |
| 71 | 70 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) = ( 𝑦 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) |
| 72 | 71 | elrnmpt | ⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑦 ∈ ℕ 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) ) |
| 73 | 68 72 | mp1i | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑦 ∈ ℕ 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) ) |
| 74 | eleq2 | ⊢ ( 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) ) | |
| 75 | sseq1 | ⊢ ( 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) → ( 𝑤 ⊆ 𝑧 ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) | |
| 76 | 74 75 | anbi12d | ⊢ ( 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) → ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) ) |
| 78 | 67 73 77 | rexxfr2d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑦 ∈ ℕ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) ) |
| 79 | 66 78 | mpbird | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 80 | 79 | expr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 81 | 80 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 82 | breq1 | ⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( 𝑦 ≼ ω ↔ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ) ) | |
| 83 | rexeq | ⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) | |
| 84 | 83 | imbi2d | ⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 85 | 84 | ralbidv | ⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 86 | 82 85 | anbi12d | ⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 87 | 86 | rspcev | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ 𝒫 𝐽 ∧ ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 88 | 20 35 81 87 | syl12anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 89 | 5 88 | syldan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 90 | 89 | ralrimiva | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 91 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 92 | 91 | is1stc2 | ⊢ ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 93 | 2 90 92 | sylanbrc | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ 1stω ) |