This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfeqalem2 . (Contributed by Mario Carneiro, 2-Sep-2014) (Revised by AV, 19-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfeqa.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| mbfeqa.2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| mbfeqa.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 𝐷 ) | ||
| mbfeqalem.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) | ||
| mbfeqalem.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℝ ) | ||
| Assertion | mbfeqalem1 | ⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfeqa.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | mbfeqa.2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 3 | mbfeqa.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 𝐷 ) | |
| 4 | mbfeqalem.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) | |
| 5 | mbfeqalem.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℝ ) | |
| 6 | dfsymdif4 | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) △ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) = { 𝑧 ∣ ¬ ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) } | |
| 7 | eldif | ⊢ ( 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ∈ 𝐴 ) ) | |
| 8 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝑥 ∈ 𝐵 ) | |
| 9 | 8 4 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℝ ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) | |
| 11 | 10 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 12 | 8 9 11 | syl2an2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 13 | 8 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐷 ∈ ℝ ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) | |
| 15 | 14 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐷 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) = 𝐷 ) |
| 16 | 8 13 15 | syl2an2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) = 𝐷 ) |
| 17 | 3 12 16 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) ) |
| 18 | 17 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) ) |
| 19 | nfv | ⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) | |
| 20 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) | |
| 21 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) | |
| 22 | 20 21 | nfeq | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) |
| 23 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ) | |
| 24 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) | |
| 25 | 23 24 | eqeq12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) ) |
| 26 | 19 22 25 | cbvralw | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) |
| 27 | 18 26 | sylib | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) |
| 28 | 27 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ) |
| 29 | 28 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) |
| 30 | 7 29 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) |
| 31 | 30 | anass1rs | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) |
| 32 | 31 | pm5.32da | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
| 33 | 4 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℝ ) |
| 34 | 33 | ffnd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) Fn 𝐵 ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) Fn 𝐵 ) |
| 36 | elpreima | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) Fn 𝐵 → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
| 38 | 5 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) : 𝐵 ⟶ ℝ ) |
| 39 | 38 | ffnd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
| 41 | elpreima | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
| 43 | 32 37 42 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) |
| 44 | 43 | ex | ⊢ ( 𝜑 → ( ¬ 𝑧 ∈ 𝐴 → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ) |
| 45 | 44 | con1d | ⊢ ( 𝜑 → ( ¬ ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) → 𝑧 ∈ 𝐴 ) ) |
| 46 | 45 | abssdv | ⊢ ( 𝜑 → { 𝑧 ∣ ¬ ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ↔ 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) } ⊆ 𝐴 ) |
| 47 | 6 46 | eqsstrid | ⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) △ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ 𝐴 ) |
| 48 | 47 | difsymssdifssd | ⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ 𝐴 ) |
| 49 | 48 1 | sstrd | ⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ ℝ ) |
| 50 | ovolssnul | ⊢ ( ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) = 0 ) | |
| 51 | 48 1 2 50 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) = 0 ) |
| 52 | nulmbl | ⊢ ( ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) = 0 ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) | |
| 53 | 49 51 52 | syl2anc | ⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |