This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004) (Revised by AV, 17-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymdif4 | ⊢ ( 𝐴 △ 𝐵 ) = { 𝑥 ∣ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsymdif | ⊢ ( 𝑥 ∈ ( 𝐴 △ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | eqabi | ⊢ ( 𝐴 △ 𝐵 ) = { 𝑥 ∣ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) } |