This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfeqa . (Contributed by Mario Carneiro, 2-Sep-2014) (Proof shortened by AV, 19-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfeqa.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| mbfeqa.2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| mbfeqa.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 𝐷 ) | ||
| mbfeqalem.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) | ||
| mbfeqalem.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℝ ) | ||
| Assertion | mbfeqalem2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfeqa.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | mbfeqa.2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 3 | mbfeqa.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 𝐷 ) | |
| 4 | mbfeqalem.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) | |
| 5 | mbfeqalem.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℝ ) | |
| 6 | inundif | ⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) = ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) | |
| 7 | incom | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) | |
| 8 | dfin4 | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) | |
| 9 | 7 8 | eqtri | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) |
| 10 | id | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol → ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) | |
| 11 | 1 2 3 4 5 | mbfeqalem1 | ⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |
| 12 | difmbl | ⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ∧ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ∈ dom vol ) | |
| 13 | 10 11 12 | syl2anr | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 14 | 9 13 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) |
| 15 | 3 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐷 = 𝐶 ) |
| 16 | 1 2 15 5 4 | mbfeqalem1 | ⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) |
| 18 | unmbl | ⊢ ( ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ∧ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) → ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) ∈ dom vol ) | |
| 19 | 14 17 18 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 20 | 6 19 | eqeltrrid | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) → ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) |
| 21 | inundif | ⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) = ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) | |
| 22 | incom | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) | |
| 23 | dfin4 | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) | |
| 24 | 22 23 | eqtri | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) = ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) |
| 25 | id | ⊢ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol → ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) | |
| 26 | difmbl | ⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ∧ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) ∈ dom vol ) | |
| 27 | 25 16 26 | syl2anr | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 28 | 24 27 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |
| 29 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) |
| 30 | unmbl | ⊢ ( ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ∧ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∈ dom vol ) → ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ∈ dom vol ) | |
| 31 | 28 29 30 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∩ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ∪ ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∖ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ) ) ∈ dom vol ) |
| 32 | 21 31 | eqeltrrid | ⊢ ( ( 𝜑 ∧ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) → ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) |
| 33 | 20 32 | impbida | ⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ↔ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) ) |
| 34 | 33 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) ) |
| 35 | 4 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℝ ) |
| 36 | ismbf | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℝ → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) ) | |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) “ 𝑦 ) ∈ dom vol ) ) |
| 38 | 5 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) : 𝐵 ⟶ ℝ ) |
| 39 | ismbf | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) : 𝐵 ⟶ ℝ → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) “ 𝑦 ) ∈ dom vol ) ) |
| 41 | 34 37 40 | 3bitr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ) ) |