This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the symmetric difference is contained in C , so is one of the differences. (Contributed by AV, 17-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | difsymssdifssd.1 | ⊢ ( 𝜑 → ( 𝐴 △ 𝐵 ) ⊆ 𝐶 ) | |
| Assertion | difsymssdifssd | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difsymssdifssd.1 | ⊢ ( 𝜑 → ( 𝐴 △ 𝐵 ) ⊆ 𝐶 ) | |
| 2 | difsssymdif | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ ( 𝐴 △ 𝐵 ) | |
| 3 | 2 1 | sstrid | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) |