This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for mapfien . (Contributed by AV, 3-Jul-2019) (Revised by AV, 28-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapfien.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| mapfien.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | ||
| mapfien.w | ⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) | ||
| mapfien.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | ||
| mapfien.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | ||
| mapfien.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| mapfien.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| mapfien.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| mapfien.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | ||
| mapfien.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | mapfienlem1 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| 2 | mapfien.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | |
| 3 | mapfien.w | ⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) | |
| 4 | mapfien.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | |
| 5 | mapfien.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | |
| 6 | mapfien.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 7 | mapfien.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 8 | mapfien.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 9 | mapfien.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | |
| 10 | mapfien.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 11 | 3 | fvexi | ⊢ 𝑊 ∈ V |
| 12 | 11 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑊 ∈ V ) |
| 13 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑍 ∈ 𝐵 ) |
| 14 | elrabi | ⊢ ( 𝑓 ∈ { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 15 | elmapi | ⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑓 ∈ { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 17 | 16 1 | eleq2s | ⊢ ( 𝑓 ∈ 𝑆 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 18 | f1of | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) | |
| 19 | 4 18 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 20 | fco | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝐹 : 𝐶 ⟶ 𝐴 ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) | |
| 21 | 17 19 20 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
| 22 | f1of | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → 𝐺 : 𝐵 ⟶ 𝐷 ) | |
| 23 | 5 22 | syl | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 25 | ssidd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐵 ⊆ 𝐵 ) | |
| 26 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐶 ∈ 𝑋 ) |
| 27 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 28 | breq1 | ⊢ ( 𝑥 = 𝑓 → ( 𝑥 finSupp 𝑍 ↔ 𝑓 finSupp 𝑍 ) ) | |
| 29 | 28 1 | elrab2 | ⊢ ( 𝑓 ∈ 𝑆 ↔ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑓 finSupp 𝑍 ) ) |
| 30 | 29 | simprbi | ⊢ ( 𝑓 ∈ 𝑆 → 𝑓 finSupp 𝑍 ) |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 finSupp 𝑍 ) |
| 32 | f1of1 | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 –1-1→ 𝐴 ) | |
| 33 | 4 32 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1→ 𝐴 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐹 : 𝐶 –1-1→ 𝐴 ) |
| 35 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 ∈ 𝑆 ) | |
| 36 | 31 34 13 35 | fsuppco | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝑓 ∘ 𝐹 ) finSupp 𝑍 ) |
| 37 | 3 | eqcomi | ⊢ ( 𝐺 ‘ 𝑍 ) = 𝑊 |
| 38 | 37 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑍 ) = 𝑊 ) |
| 39 | 12 13 21 24 25 26 27 36 38 | fsuppcor | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) |