This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppco.f | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| fsuppco.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 –1-1→ 𝑌 ) | ||
| fsuppco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | ||
| fsuppco.v | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| Assertion | fsuppco | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppco.f | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| 2 | fsuppco.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 –1-1→ 𝑌 ) | |
| 3 | fsuppco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| 4 | fsuppco.v | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 5 | df-f1 | ⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 ↔ ( 𝐺 : 𝑋 ⟶ 𝑌 ∧ Fun ◡ 𝐺 ) ) | |
| 6 | 5 | simprbi | ⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 → Fun ◡ 𝐺 ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → Fun ◡ 𝐺 ) |
| 8 | cofunex2g | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun ◡ 𝐺 ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) | |
| 9 | 4 7 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
| 10 | suppimacnv | ⊢ ( ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) | |
| 11 | 9 3 10 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
| 12 | suppimacnv | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 13 | 4 3 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 14 | 1 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 15 | 13 14 | eqeltrrd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
| 16 | 15 2 | fsuppcolem | ⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
| 17 | 11 16 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
| 18 | fsuppimp | ⊢ ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 19 | 18 | simpld | ⊢ ( 𝐹 finSupp 𝑍 → Fun 𝐹 ) |
| 20 | 1 19 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 21 | f1fun | ⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 → Fun 𝐺 ) | |
| 22 | 2 21 | syl | ⊢ ( 𝜑 → Fun 𝐺 ) |
| 23 | funco | ⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ) → Fun ( 𝐹 ∘ 𝐺 ) ) | |
| 24 | 20 22 23 | syl2anc | ⊢ ( 𝜑 → Fun ( 𝐹 ∘ 𝐺 ) ) |
| 25 | funisfsupp | ⊢ ( ( Fun ( 𝐹 ∘ 𝐺 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) finSupp 𝑍 ↔ ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) | |
| 26 | 24 9 3 25 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) finSupp 𝑍 ↔ ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) |
| 27 | 17 26 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) finSupp 𝑍 ) |