This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for mapfien . (Contributed by AV, 3-Jul-2019) (Revised by AV, 28-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapfien.s | |- S = { x e. ( B ^m A ) | x finSupp Z } |
|
| mapfien.t | |- T = { x e. ( D ^m C ) | x finSupp W } |
||
| mapfien.w | |- W = ( G ` Z ) |
||
| mapfien.f | |- ( ph -> F : C -1-1-onto-> A ) |
||
| mapfien.g | |- ( ph -> G : B -1-1-onto-> D ) |
||
| mapfien.a | |- ( ph -> A e. U ) |
||
| mapfien.b | |- ( ph -> B e. V ) |
||
| mapfien.c | |- ( ph -> C e. X ) |
||
| mapfien.d | |- ( ph -> D e. Y ) |
||
| mapfien.z | |- ( ph -> Z e. B ) |
||
| Assertion | mapfienlem1 | |- ( ( ph /\ f e. S ) -> ( G o. ( f o. F ) ) finSupp W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien.s | |- S = { x e. ( B ^m A ) | x finSupp Z } |
|
| 2 | mapfien.t | |- T = { x e. ( D ^m C ) | x finSupp W } |
|
| 3 | mapfien.w | |- W = ( G ` Z ) |
|
| 4 | mapfien.f | |- ( ph -> F : C -1-1-onto-> A ) |
|
| 5 | mapfien.g | |- ( ph -> G : B -1-1-onto-> D ) |
|
| 6 | mapfien.a | |- ( ph -> A e. U ) |
|
| 7 | mapfien.b | |- ( ph -> B e. V ) |
|
| 8 | mapfien.c | |- ( ph -> C e. X ) |
|
| 9 | mapfien.d | |- ( ph -> D e. Y ) |
|
| 10 | mapfien.z | |- ( ph -> Z e. B ) |
|
| 11 | 3 | fvexi | |- W e. _V |
| 12 | 11 | a1i | |- ( ( ph /\ f e. S ) -> W e. _V ) |
| 13 | 10 | adantr | |- ( ( ph /\ f e. S ) -> Z e. B ) |
| 14 | elrabi | |- ( f e. { x e. ( B ^m A ) | x finSupp Z } -> f e. ( B ^m A ) ) |
|
| 15 | elmapi | |- ( f e. ( B ^m A ) -> f : A --> B ) |
|
| 16 | 14 15 | syl | |- ( f e. { x e. ( B ^m A ) | x finSupp Z } -> f : A --> B ) |
| 17 | 16 1 | eleq2s | |- ( f e. S -> f : A --> B ) |
| 18 | f1of | |- ( F : C -1-1-onto-> A -> F : C --> A ) |
|
| 19 | 4 18 | syl | |- ( ph -> F : C --> A ) |
| 20 | fco | |- ( ( f : A --> B /\ F : C --> A ) -> ( f o. F ) : C --> B ) |
|
| 21 | 17 19 20 | syl2anr | |- ( ( ph /\ f e. S ) -> ( f o. F ) : C --> B ) |
| 22 | f1of | |- ( G : B -1-1-onto-> D -> G : B --> D ) |
|
| 23 | 5 22 | syl | |- ( ph -> G : B --> D ) |
| 24 | 23 | adantr | |- ( ( ph /\ f e. S ) -> G : B --> D ) |
| 25 | ssidd | |- ( ( ph /\ f e. S ) -> B C_ B ) |
|
| 26 | 8 | adantr | |- ( ( ph /\ f e. S ) -> C e. X ) |
| 27 | 7 | adantr | |- ( ( ph /\ f e. S ) -> B e. V ) |
| 28 | breq1 | |- ( x = f -> ( x finSupp Z <-> f finSupp Z ) ) |
|
| 29 | 28 1 | elrab2 | |- ( f e. S <-> ( f e. ( B ^m A ) /\ f finSupp Z ) ) |
| 30 | 29 | simprbi | |- ( f e. S -> f finSupp Z ) |
| 31 | 30 | adantl | |- ( ( ph /\ f e. S ) -> f finSupp Z ) |
| 32 | f1of1 | |- ( F : C -1-1-onto-> A -> F : C -1-1-> A ) |
|
| 33 | 4 32 | syl | |- ( ph -> F : C -1-1-> A ) |
| 34 | 33 | adantr | |- ( ( ph /\ f e. S ) -> F : C -1-1-> A ) |
| 35 | simpr | |- ( ( ph /\ f e. S ) -> f e. S ) |
|
| 36 | 31 34 13 35 | fsuppco | |- ( ( ph /\ f e. S ) -> ( f o. F ) finSupp Z ) |
| 37 | 3 | eqcomi | |- ( G ` Z ) = W |
| 38 | 37 | a1i | |- ( ( ph /\ f e. S ) -> ( G ` Z ) = W ) |
| 39 | 12 13 21 24 25 26 27 36 38 | fsuppcor | |- ( ( ph /\ f e. S ) -> ( G o. ( f o. F ) ) finSupp W ) |