This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for mapfien . (Contributed by AV, 3-Jul-2019) (Revised by AV, 28-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapfien.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| mapfien.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | ||
| mapfien.w | ⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) | ||
| mapfien.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | ||
| mapfien.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | ||
| mapfien.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| mapfien.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| mapfien.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| mapfien.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | ||
| mapfien.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | mapfienlem2 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| 2 | mapfien.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | |
| 3 | mapfien.w | ⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) | |
| 4 | mapfien.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | |
| 5 | mapfien.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | |
| 6 | mapfien.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 7 | mapfien.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 8 | mapfien.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 9 | mapfien.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | |
| 10 | mapfien.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑍 ∈ 𝐵 ) |
| 12 | f1of | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → 𝐺 : 𝐵 ⟶ 𝐷 ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 14 | 13 10 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) ∈ 𝐷 ) |
| 15 | 3 14 | eqeltrid | ⊢ ( 𝜑 → 𝑊 ∈ 𝐷 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑊 ∈ 𝐷 ) |
| 17 | elrabi | ⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) | |
| 18 | elmapi | ⊢ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 20 | 19 2 | eleq2s | ⊢ ( 𝑔 ∈ 𝑇 → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 22 | f1ocnv | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) | |
| 23 | f1of | ⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) | |
| 24 | 5 22 23 | 3syl | ⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 26 | ssidd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝐷 ⊆ 𝐷 ) | |
| 27 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝐶 ∈ 𝑋 ) |
| 28 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝐷 ∈ 𝑌 ) |
| 29 | breq1 | ⊢ ( 𝑥 = 𝑔 → ( 𝑥 finSupp 𝑊 ↔ 𝑔 finSupp 𝑊 ) ) | |
| 30 | 29 | elrab | ⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } ↔ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ∧ 𝑔 finSupp 𝑊 ) ) |
| 31 | 30 | simprbi | ⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 finSupp 𝑊 ) |
| 32 | 31 2 | eleq2s | ⊢ ( 𝑔 ∈ 𝑇 → 𝑔 finSupp 𝑊 ) |
| 33 | 32 | adantl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 finSupp 𝑊 ) |
| 34 | 5 10 | jca | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ) |
| 35 | 3 | eqcomi | ⊢ ( 𝐺 ‘ 𝑍 ) = 𝑊 |
| 36 | 34 35 | jctir | ⊢ ( 𝜑 → ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐺 ‘ 𝑍 ) = 𝑊 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐺 ‘ 𝑍 ) = 𝑊 ) ) |
| 38 | f1ocnvfv | ⊢ ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑍 ) = 𝑊 → ( ◡ 𝐺 ‘ 𝑊 ) = 𝑍 ) ) | |
| 39 | 38 | imp | ⊢ ( ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐺 ‘ 𝑍 ) = 𝑊 ) → ( ◡ 𝐺 ‘ 𝑊 ) = 𝑍 ) |
| 40 | 37 39 | syl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ‘ 𝑊 ) = 𝑍 ) |
| 41 | 11 16 21 25 26 27 28 33 40 | fsuppcor | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) finSupp 𝑍 ) |
| 42 | f1ocnv | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) | |
| 43 | f1of1 | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) | |
| 44 | 4 42 43 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) |
| 46 | 13 7 | jca | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐷 ∧ 𝐵 ∈ 𝑉 ) ) |
| 47 | fex | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐷 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) | |
| 48 | cnvexg | ⊢ ( 𝐺 ∈ V → ◡ 𝐺 ∈ V ) | |
| 49 | 46 47 48 | 3syl | ⊢ ( 𝜑 → ◡ 𝐺 ∈ V ) |
| 50 | coexg | ⊢ ( ( ◡ 𝐺 ∈ V ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) ∈ V ) | |
| 51 | 49 50 | sylan | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) ∈ V ) |
| 52 | 41 45 11 51 | fsuppco | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) |