This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cocan1 | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝐻 ) = ( 𝐹 ∘ 𝐾 ) ↔ 𝐻 = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco3 | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 2 | 1 | 3ad2antl2 | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 3 | fvco3 | ⊢ ( ( 𝐾 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ) | |
| 4 | 3 | 3ad2antl3 | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ) ) |
| 6 | simpl1 | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐵 –1-1→ 𝐶 ) | |
| 7 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 8 | 7 | 3ad2antl2 | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
| 9 | ffvelcdm | ⊢ ( ( 𝐾 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 10 | 9 | 3ad2antl3 | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑥 ) ∈ 𝐵 ) |
| 11 | f1fveq | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ ( ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐾 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) | |
| 12 | 6 8 10 11 | syl12anc | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
| 13 | 5 12 | bitrd | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
| 14 | 13 | ralbidva | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
| 15 | f1f | ⊢ ( 𝐹 : 𝐵 –1-1→ 𝐶 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 17 | 16 | ffnd | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐹 Fn 𝐵 ) |
| 18 | simp2 | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 19 | fnfco | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐻 ) Fn 𝐴 ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐻 ) Fn 𝐴 ) |
| 21 | simp3 | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐾 : 𝐴 ⟶ 𝐵 ) | |
| 22 | fnfco | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐾 ) Fn 𝐴 ) | |
| 23 | 17 21 22 | syl2anc | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐾 ) Fn 𝐴 ) |
| 24 | eqfnfv | ⊢ ( ( ( 𝐹 ∘ 𝐻 ) Fn 𝐴 ∧ ( 𝐹 ∘ 𝐾 ) Fn 𝐴 ) → ( ( 𝐹 ∘ 𝐻 ) = ( 𝐹 ∘ 𝐾 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ) ) | |
| 25 | 20 23 24 | syl2anc | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝐻 ) = ( 𝐹 ∘ 𝐾 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ) ) |
| 26 | 18 | ffnd | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐻 Fn 𝐴 ) |
| 27 | 21 | ffnd | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐾 Fn 𝐴 ) |
| 28 | eqfnfv | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐾 Fn 𝐴 ) → ( 𝐻 = 𝐾 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) | |
| 29 | 26 27 28 | syl2anc | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( 𝐻 = 𝐾 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
| 30 | 14 25 29 | 3bitr4d | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝐻 ) = ( 𝐹 ∘ 𝐾 ) ↔ 𝐻 = 𝐾 ) ) |