This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | madetsumid.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| madetsumid.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| madetsumid.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | ||
| madetsumid.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | ||
| madetsumid.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| madetsumid.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | madetsumid | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁 ) ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) = ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madetsumid.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | madetsumid.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | madetsumid.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | |
| 4 | madetsumid.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| 5 | madetsumid.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 6 | madetsumid.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 7 | fveq2 | ⊢ ( 𝑃 = ( I ↾ 𝑁 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑃 ) = ( ( 𝑌 ∘ 𝑆 ) ‘ ( I ↾ 𝑁 ) ) ) | |
| 8 | fveq1 | ⊢ ( 𝑃 = ( I ↾ 𝑁 ) → ( 𝑃 ‘ 𝑟 ) = ( ( I ↾ 𝑁 ) ‘ 𝑟 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑃 = ( I ↾ 𝑁 ) → ( ( 𝑃 ‘ 𝑟 ) 𝑀 𝑟 ) = ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) |
| 10 | 9 | mpteq2dv | ⊢ ( 𝑃 = ( I ↾ 𝑁 ) → ( 𝑟 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑟 ) 𝑀 𝑟 ) ) = ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) ) |
| 11 | 10 | oveq2d | ⊢ ( 𝑃 = ( I ↾ 𝑁 ) → ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑟 ) 𝑀 𝑟 ) ) ) = ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) |
| 12 | 7 11 | oveq12d | ⊢ ( 𝑃 = ( I ↾ 𝑁 ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) = ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( I ↾ 𝑁 ) ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁 ) ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) = ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( I ↾ 𝑁 ) ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) ) |
| 14 | 1 2 | matrcl | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 15 | 14 | simpld | ⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 16 | 4 5 | coeq12i | ⊢ ( 𝑌 ∘ 𝑆 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) |
| 17 | 16 | a1i | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑌 ∘ 𝑆 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ) |
| 18 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 19 | 18 | symgid | ⊢ ( 𝑁 ∈ Fin → ( I ↾ 𝑁 ) = ( 0g ‘ ( SymGrp ‘ 𝑁 ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( I ↾ 𝑁 ) = ( 0g ‘ ( SymGrp ‘ 𝑁 ) ) ) |
| 21 | 17 20 | fveq12d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ( I ↾ 𝑁 ) ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ ( 0g ‘ ( SymGrp ‘ 𝑁 ) ) ) ) |
| 22 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 23 | zrhpsgnmhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) | |
| 24 | 3 | oveq2i | ⊢ ( ( SymGrp ‘ 𝑁 ) MndHom 𝑈 ) = ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) |
| 25 | 23 24 | eleqtrrdi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom 𝑈 ) ) |
| 26 | 22 25 | sylan | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom 𝑈 ) ) |
| 27 | eqid | ⊢ ( 0g ‘ ( SymGrp ‘ 𝑁 ) ) = ( 0g ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 28 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 29 | 3 28 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑈 ) |
| 30 | 27 29 | mhm0 | ⊢ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom 𝑈 ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ ( 0g ‘ ( SymGrp ‘ 𝑁 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 31 | 26 30 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ ( 0g ‘ ( SymGrp ‘ 𝑁 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 32 | 21 31 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ( I ↾ 𝑁 ) ) = ( 1r ‘ 𝑅 ) ) |
| 33 | fvresi | ⊢ ( 𝑟 ∈ 𝑁 → ( ( I ↾ 𝑁 ) ‘ 𝑟 ) = 𝑟 ) | |
| 34 | 33 | adantl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑟 ∈ 𝑁 ) → ( ( I ↾ 𝑁 ) ‘ 𝑟 ) = 𝑟 ) |
| 35 | 34 | oveq1d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑟 ∈ 𝑁 ) → ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) = ( 𝑟 𝑀 𝑟 ) ) |
| 36 | 35 | mpteq2dva | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) = ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) ) = ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) |
| 38 | 32 37 | oveq12d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( I ↾ 𝑁 ) ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) = ( ( 1r ‘ 𝑅 ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) ) |
| 39 | 15 38 | sylan2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( I ↾ 𝑁 ) ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) = ( ( 1r ‘ 𝑅 ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) ) |
| 40 | 1 2 3 | matgsumcl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 41 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 42 | 41 6 28 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) = ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) |
| 43 | 22 40 42 | syl2an2r | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) = ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) |
| 44 | 39 43 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( I ↾ 𝑁 ) ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) = ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) |
| 45 | 44 | 3adant3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁 ) ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( I ↾ 𝑁 ) ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( ( I ↾ 𝑁 ) ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) = ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) |
| 46 | 13 45 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁 ) ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑟 ) 𝑀 𝑟 ) ) ) ) = ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ) |