This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matepmcl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matepmcl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| matepmcl.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | ||
| Assertion | matepmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑛 ∈ 𝑁 ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matepmcl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matepmcl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | matepmcl.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 4 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 5 | 4 3 | symgfv | ⊢ ( ( 𝑄 ∈ 𝑃 ∧ 𝑛 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ) |
| 6 | 5 | 3ad2antl2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ) |
| 7 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ 𝑁 ) → 𝑛 ∈ 𝑁 ) | |
| 8 | 2 | eleq2i | ⊢ ( 𝑀 ∈ 𝐵 ↔ 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 9 | 8 | biimpi | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ 𝑁 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | 1 12 | matecl | ⊢ ( ( ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ∧ 𝑛 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 14 | 6 7 11 13 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 | 14 | ralrimiva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑛 ∈ 𝑁 ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |