This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018) (Proof shortened by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | madetsumid.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| madetsumid.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| madetsumid.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | ||
| Assertion | matgsumcl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madetsumid.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | madetsumid.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | madetsumid.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | 3 4 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑈 ) |
| 6 | 3 | crngmgp | ⊢ ( 𝑅 ∈ CRing → 𝑈 ∈ CMnd ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑈 ∈ CMnd ) |
| 8 | 1 2 | matrcl | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 11 | simpr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) | |
| 12 | 1 4 2 | matbas2i | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 13 | elmapi | ⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑟 ∈ 𝑁 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | simpr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑟 ∈ 𝑁 ) → 𝑟 ∈ 𝑁 ) | |
| 17 | 15 16 16 | fovcdmd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑟 ∈ 𝑁 ) → ( 𝑟 𝑀 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
| 18 | 17 | ralrimiva | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑟 ∈ 𝑁 ( 𝑟 𝑀 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
| 19 | 5 7 10 18 | gsummptcl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |