This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | madetsumid.a | |- A = ( N Mat R ) |
|
| madetsumid.b | |- B = ( Base ` A ) |
||
| madetsumid.u | |- U = ( mulGrp ` R ) |
||
| madetsumid.y | |- Y = ( ZRHom ` R ) |
||
| madetsumid.s | |- S = ( pmSgn ` N ) |
||
| madetsumid.t | |- .x. = ( .r ` R ) |
||
| Assertion | madetsumid | |- ( ( R e. CRing /\ M e. B /\ P = ( _I |` N ) ) -> ( ( ( Y o. S ) ` P ) .x. ( U gsum ( r e. N |-> ( ( P ` r ) M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madetsumid.a | |- A = ( N Mat R ) |
|
| 2 | madetsumid.b | |- B = ( Base ` A ) |
|
| 3 | madetsumid.u | |- U = ( mulGrp ` R ) |
|
| 4 | madetsumid.y | |- Y = ( ZRHom ` R ) |
|
| 5 | madetsumid.s | |- S = ( pmSgn ` N ) |
|
| 6 | madetsumid.t | |- .x. = ( .r ` R ) |
|
| 7 | fveq2 | |- ( P = ( _I |` N ) -> ( ( Y o. S ) ` P ) = ( ( Y o. S ) ` ( _I |` N ) ) ) |
|
| 8 | fveq1 | |- ( P = ( _I |` N ) -> ( P ` r ) = ( ( _I |` N ) ` r ) ) |
|
| 9 | 8 | oveq1d | |- ( P = ( _I |` N ) -> ( ( P ` r ) M r ) = ( ( ( _I |` N ) ` r ) M r ) ) |
| 10 | 9 | mpteq2dv | |- ( P = ( _I |` N ) -> ( r e. N |-> ( ( P ` r ) M r ) ) = ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) |
| 11 | 10 | oveq2d | |- ( P = ( _I |` N ) -> ( U gsum ( r e. N |-> ( ( P ` r ) M r ) ) ) = ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) |
| 12 | 7 11 | oveq12d | |- ( P = ( _I |` N ) -> ( ( ( Y o. S ) ` P ) .x. ( U gsum ( r e. N |-> ( ( P ` r ) M r ) ) ) ) = ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) ) |
| 13 | 12 | 3ad2ant3 | |- ( ( R e. CRing /\ M e. B /\ P = ( _I |` N ) ) -> ( ( ( Y o. S ) ` P ) .x. ( U gsum ( r e. N |-> ( ( P ` r ) M r ) ) ) ) = ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) ) |
| 14 | 1 2 | matrcl | |- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
| 15 | 14 | simpld | |- ( M e. B -> N e. Fin ) |
| 16 | 4 5 | coeq12i | |- ( Y o. S ) = ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) |
| 17 | 16 | a1i | |- ( ( R e. CRing /\ N e. Fin ) -> ( Y o. S ) = ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ) |
| 18 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 19 | 18 | symgid | |- ( N e. Fin -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
| 20 | 19 | adantl | |- ( ( R e. CRing /\ N e. Fin ) -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
| 21 | 17 20 | fveq12d | |- ( ( R e. CRing /\ N e. Fin ) -> ( ( Y o. S ) ` ( _I |` N ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) ) |
| 22 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 23 | zrhpsgnmhm | |- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
|
| 24 | 3 | oveq2i | |- ( ( SymGrp ` N ) MndHom U ) = ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) |
| 25 | 23 24 | eleqtrrdi | |- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom U ) ) |
| 26 | 22 25 | sylan | |- ( ( R e. CRing /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom U ) ) |
| 27 | eqid | |- ( 0g ` ( SymGrp ` N ) ) = ( 0g ` ( SymGrp ` N ) ) |
|
| 28 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 29 | 3 28 | ringidval | |- ( 1r ` R ) = ( 0g ` U ) |
| 30 | 27 29 | mhm0 | |- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom U ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = ( 1r ` R ) ) |
| 31 | 26 30 | syl | |- ( ( R e. CRing /\ N e. Fin ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = ( 1r ` R ) ) |
| 32 | 21 31 | eqtrd | |- ( ( R e. CRing /\ N e. Fin ) -> ( ( Y o. S ) ` ( _I |` N ) ) = ( 1r ` R ) ) |
| 33 | fvresi | |- ( r e. N -> ( ( _I |` N ) ` r ) = r ) |
|
| 34 | 33 | adantl | |- ( ( ( R e. CRing /\ N e. Fin ) /\ r e. N ) -> ( ( _I |` N ) ` r ) = r ) |
| 35 | 34 | oveq1d | |- ( ( ( R e. CRing /\ N e. Fin ) /\ r e. N ) -> ( ( ( _I |` N ) ` r ) M r ) = ( r M r ) ) |
| 36 | 35 | mpteq2dva | |- ( ( R e. CRing /\ N e. Fin ) -> ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) = ( r e. N |-> ( r M r ) ) ) |
| 37 | 36 | oveq2d | |- ( ( R e. CRing /\ N e. Fin ) -> ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
| 38 | 32 37 | oveq12d | |- ( ( R e. CRing /\ N e. Fin ) -> ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) = ( ( 1r ` R ) .x. ( U gsum ( r e. N |-> ( r M r ) ) ) ) ) |
| 39 | 15 38 | sylan2 | |- ( ( R e. CRing /\ M e. B ) -> ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) = ( ( 1r ` R ) .x. ( U gsum ( r e. N |-> ( r M r ) ) ) ) ) |
| 40 | 1 2 3 | matgsumcl | |- ( ( R e. CRing /\ M e. B ) -> ( U gsum ( r e. N |-> ( r M r ) ) ) e. ( Base ` R ) ) |
| 41 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 42 | 41 6 28 | ringlidm | |- ( ( R e. Ring /\ ( U gsum ( r e. N |-> ( r M r ) ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) .x. ( U gsum ( r e. N |-> ( r M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
| 43 | 22 40 42 | syl2an2r | |- ( ( R e. CRing /\ M e. B ) -> ( ( 1r ` R ) .x. ( U gsum ( r e. N |-> ( r M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
| 44 | 39 43 | eqtrd | |- ( ( R e. CRing /\ M e. B ) -> ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
| 45 | 44 | 3adant3 | |- ( ( R e. CRing /\ M e. B /\ P = ( _I |` N ) ) -> ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
| 46 | 13 45 | eqtrd | |- ( ( R e. CRing /\ M e. B /\ P = ( _I |` N ) ) -> ( ( ( Y o. S ) ` P ) .x. ( U gsum ( r e. N |-> ( ( P ` r ) M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |