This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for scalar multiplication. ( hvmulcan2 analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecmulcan2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lvecmulcan2.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lvecmulcan2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lvecmulcan2.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lvecmulcan2.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lvecmulcan2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lvecmulcan2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lvecmulcan2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| lvecmulcan2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lvecmulcan2.n | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| Assertion | lvecvscan2 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmulcan2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lvecmulcan2.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lvecmulcan2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lvecmulcan2.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lvecmulcan2.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 6 | lvecmulcan2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 7 | lvecmulcan2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 8 | lvecmulcan2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 9 | lvecmulcan2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 10 | lvecmulcan2.n | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 11 | 10 | neneqd | ⊢ ( 𝜑 → ¬ 𝑋 = 0 ) |
| 12 | biorf | ⊢ ( ¬ 𝑋 = 0 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ ( 𝑋 = 0 ∨ ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ) ) ) | |
| 13 | orcom | ⊢ ( ( 𝑋 = 0 ∨ ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ) ↔ ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ∨ 𝑋 = 0 ) ) | |
| 14 | 12 13 | bitrdi | ⊢ ( ¬ 𝑋 = 0 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ∨ 𝑋 = 0 ) ) ) |
| 15 | 11 14 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ∨ 𝑋 = 0 ) ) ) |
| 16 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 17 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 18 | 6 17 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 19 | 3 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 21 | eqid | ⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) | |
| 22 | 4 21 | grpsubcl | ⊢ ( ( 𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ∈ 𝐾 ) |
| 23 | 20 7 8 22 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ∈ 𝐾 ) |
| 24 | 1 2 3 4 16 5 6 23 9 | lvecvs0or | ⊢ ( 𝜑 → ( ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = 0 ↔ ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ∨ 𝑋 = 0 ) ) ) |
| 25 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 26 | 1 2 3 4 25 21 18 7 8 9 | lmodsubdir | ⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) ) |
| 27 | 26 | eqeq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = 0 ↔ ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) = 0 ) ) |
| 28 | 15 24 27 | 3bitr2rd | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) = 0 ↔ ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ) ) |
| 29 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 30 | 18 7 9 29 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 31 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
| 32 | 18 8 9 31 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
| 33 | 1 5 25 | lmodsubeq0 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐵 · 𝑋 ) ∈ 𝑉 ) → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) = 0 ↔ ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ) ) |
| 34 | 18 30 32 33 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) = 0 ↔ ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ) ) |
| 35 | 4 16 21 | grpsubeq0 | ⊢ ( ( 𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ 𝐴 = 𝐵 ) ) |
| 36 | 20 7 8 35 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ 𝐴 = 𝐵 ) ) |
| 37 | 28 34 36 | 3bitr3d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ↔ 𝐴 = 𝐵 ) ) |