This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a scalar product is zero, one of its factors must be zero. ( hvmul0or analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecmul0or.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lvecmul0or.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lvecmul0or.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lvecmul0or.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lvecmul0or.o | ⊢ 𝑂 = ( 0g ‘ 𝐹 ) | ||
| lvecmul0or.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lvecmul0or.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lvecmul0or.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lvecmul0or.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | lvecvs0or | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = 0 ↔ ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmul0or.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lvecmul0or.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lvecmul0or.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lvecmul0or.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lvecmul0or.o | ⊢ 𝑂 = ( 0g ‘ 𝐹 ) | |
| 6 | lvecmul0or.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 7 | lvecmul0or.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 8 | lvecmul0or.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 9 | lvecmul0or.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 10 | df-ne | ⊢ ( 𝐴 ≠ 𝑂 ↔ ¬ 𝐴 = 𝑂 ) | |
| 11 | oveq2 | ⊢ ( ( 𝐴 · 𝑋 ) = 0 → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · 0 ) ) | |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · 0 ) ) |
| 13 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝑊 ∈ LVec ) |
| 14 | 3 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝐹 ∈ DivRing ) |
| 16 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝐴 ∈ 𝐾 ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝐴 ≠ 𝑂 ) | |
| 18 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 19 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 20 | eqid | ⊢ ( invr ‘ 𝐹 ) = ( invr ‘ 𝐹 ) | |
| 21 | 4 5 18 19 20 | drnginvrl | ⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 22 | 15 16 17 21 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 23 | 22 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
| 24 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 25 | 7 24 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝑊 ∈ LMod ) |
| 27 | 4 5 20 | drnginvrcl | ⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 𝑂 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 28 | 15 16 17 27 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 29 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝑋 ∈ 𝑉 ) |
| 30 | 1 3 2 4 18 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 31 | 26 28 16 29 30 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 32 | 1 3 2 19 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 33 | 25 9 32 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 35 | 23 31 34 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) = 𝑋 ) |
| 36 | 35 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) = 𝑋 ) |
| 37 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) → 𝑊 ∈ LMod ) |
| 38 | 37 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → 𝑊 ∈ LMod ) |
| 39 | 28 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 40 | 3 2 4 6 | lmodvs0 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · 0 ) = 0 ) |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · 0 ) = 0 ) |
| 42 | 12 36 41 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → 𝑋 = 0 ) |
| 43 | 42 | ex | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) → ( 𝐴 ≠ 𝑂 → 𝑋 = 0 ) ) |
| 44 | 10 43 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) → ( ¬ 𝐴 = 𝑂 → 𝑋 = 0 ) ) |
| 45 | 44 | orrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) → ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) |
| 46 | 45 | ex | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = 0 → ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) ) |
| 47 | 1 3 2 5 6 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) = 0 ) |
| 48 | 25 9 47 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 · 𝑋 ) = 0 ) |
| 49 | oveq1 | ⊢ ( 𝐴 = 𝑂 → ( 𝐴 · 𝑋 ) = ( 𝑂 · 𝑋 ) ) | |
| 50 | 49 | eqeq1d | ⊢ ( 𝐴 = 𝑂 → ( ( 𝐴 · 𝑋 ) = 0 ↔ ( 𝑂 · 𝑋 ) = 0 ) ) |
| 51 | 48 50 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐴 = 𝑂 → ( 𝐴 · 𝑋 ) = 0 ) ) |
| 52 | 3 2 4 6 | lmodvs0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 · 0 ) = 0 ) |
| 53 | 25 8 52 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 · 0 ) = 0 ) |
| 54 | oveq2 | ⊢ ( 𝑋 = 0 → ( 𝐴 · 𝑋 ) = ( 𝐴 · 0 ) ) | |
| 55 | 54 | eqeq1d | ⊢ ( 𝑋 = 0 → ( ( 𝐴 · 𝑋 ) = 0 ↔ ( 𝐴 · 0 ) = 0 ) ) |
| 56 | 53 55 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑋 = 0 → ( 𝐴 · 𝑋 ) = 0 ) ) |
| 57 | 51 56 | jaod | ⊢ ( 𝜑 → ( ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) → ( 𝐴 · 𝑋 ) = 0 ) ) |
| 58 | 46 57 | impbid | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = 0 ↔ ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) ) |