This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvmulcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ) → ( ( 𝐴 ·ℎ 𝐶 ) = ( 𝐵 ·ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
| 3 | hvmulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) |
| 5 | hvsubeq0 | ⊢ ( ( ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ∧ ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 ·ℎ 𝐶 ) = ( 𝐵 ·ℎ 𝐶 ) ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 ·ℎ 𝐶 ) = ( 𝐵 ·ℎ 𝐶 ) ) ) |
| 7 | 6 | 3adant3r | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ) → ( ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 ·ℎ 𝐶 ) = ( 𝐵 ·ℎ 𝐶 ) ) ) |
| 8 | hvsubdistr2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) = 0ℎ ↔ ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = 0ℎ ) ) |
| 10 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 11 | hvmul0or | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) = 0ℎ ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ 𝐶 = 0ℎ ) ) ) | |
| 12 | 10 11 | stoic3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) = 0ℎ ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ 𝐶 = 0ℎ ) ) ) |
| 13 | 9 12 | bitr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = 0ℎ ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ 𝐶 = 0ℎ ) ) ) |
| 14 | 13 | 3adant3r | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ) → ( ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = 0ℎ ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ 𝐶 = 0ℎ ) ) ) |
| 15 | df-ne | ⊢ ( 𝐶 ≠ 0ℎ ↔ ¬ 𝐶 = 0ℎ ) | |
| 16 | biorf | ⊢ ( ¬ 𝐶 = 0ℎ → ( ( 𝐴 − 𝐵 ) = 0 ↔ ( 𝐶 = 0ℎ ∨ ( 𝐴 − 𝐵 ) = 0 ) ) ) | |
| 17 | orcom | ⊢ ( ( 𝐶 = 0ℎ ∨ ( 𝐴 − 𝐵 ) = 0 ) ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ 𝐶 = 0ℎ ) ) | |
| 18 | 16 17 | bitrdi | ⊢ ( ¬ 𝐶 = 0ℎ → ( ( 𝐴 − 𝐵 ) = 0 ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ 𝐶 = 0ℎ ) ) ) |
| 19 | 15 18 | sylbi | ⊢ ( 𝐶 ≠ 0ℎ → ( ( 𝐴 − 𝐵 ) = 0 ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ 𝐶 = 0ℎ ) ) ) |
| 20 | 19 | ad2antll | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ 𝐶 = 0ℎ ) ) ) |
| 21 | 20 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ 𝐶 = 0ℎ ) ) ) |
| 22 | subeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) | |
| 23 | 22 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| 24 | 14 21 23 | 3bitr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ) → ( ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = 0ℎ ↔ 𝐴 = 𝐵 ) ) |
| 25 | 7 24 | bitr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ) → ( ( 𝐴 ·ℎ 𝐶 ) = ( 𝐵 ·ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |