This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference between two vectors is zero, they are equal. ( hvsubeq0 analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodsubeq0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodsubeq0.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lmodsubeq0.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| Assertion | lmodsubeq0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubeq0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodsubeq0.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lmodsubeq0.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 5 | 1 2 3 | grpsubeq0 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |