This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for scalar multiplication. ( hvmulcan2 analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecmulcan2.v | |- V = ( Base ` W ) |
|
| lvecmulcan2.s | |- .x. = ( .s ` W ) |
||
| lvecmulcan2.f | |- F = ( Scalar ` W ) |
||
| lvecmulcan2.k | |- K = ( Base ` F ) |
||
| lvecmulcan2.o | |- .0. = ( 0g ` W ) |
||
| lvecmulcan2.w | |- ( ph -> W e. LVec ) |
||
| lvecmulcan2.a | |- ( ph -> A e. K ) |
||
| lvecmulcan2.b | |- ( ph -> B e. K ) |
||
| lvecmulcan2.x | |- ( ph -> X e. V ) |
||
| lvecmulcan2.n | |- ( ph -> X =/= .0. ) |
||
| Assertion | lvecvscan2 | |- ( ph -> ( ( A .x. X ) = ( B .x. X ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmulcan2.v | |- V = ( Base ` W ) |
|
| 2 | lvecmulcan2.s | |- .x. = ( .s ` W ) |
|
| 3 | lvecmulcan2.f | |- F = ( Scalar ` W ) |
|
| 4 | lvecmulcan2.k | |- K = ( Base ` F ) |
|
| 5 | lvecmulcan2.o | |- .0. = ( 0g ` W ) |
|
| 6 | lvecmulcan2.w | |- ( ph -> W e. LVec ) |
|
| 7 | lvecmulcan2.a | |- ( ph -> A e. K ) |
|
| 8 | lvecmulcan2.b | |- ( ph -> B e. K ) |
|
| 9 | lvecmulcan2.x | |- ( ph -> X e. V ) |
|
| 10 | lvecmulcan2.n | |- ( ph -> X =/= .0. ) |
|
| 11 | 10 | neneqd | |- ( ph -> -. X = .0. ) |
| 12 | biorf | |- ( -. X = .0. -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> ( X = .0. \/ ( A ( -g ` F ) B ) = ( 0g ` F ) ) ) ) |
|
| 13 | orcom | |- ( ( X = .0. \/ ( A ( -g ` F ) B ) = ( 0g ` F ) ) <-> ( ( A ( -g ` F ) B ) = ( 0g ` F ) \/ X = .0. ) ) |
|
| 14 | 12 13 | bitrdi | |- ( -. X = .0. -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> ( ( A ( -g ` F ) B ) = ( 0g ` F ) \/ X = .0. ) ) ) |
| 15 | 11 14 | syl | |- ( ph -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> ( ( A ( -g ` F ) B ) = ( 0g ` F ) \/ X = .0. ) ) ) |
| 16 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 17 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 18 | 6 17 | syl | |- ( ph -> W e. LMod ) |
| 19 | 3 | lmodfgrp | |- ( W e. LMod -> F e. Grp ) |
| 20 | 18 19 | syl | |- ( ph -> F e. Grp ) |
| 21 | eqid | |- ( -g ` F ) = ( -g ` F ) |
|
| 22 | 4 21 | grpsubcl | |- ( ( F e. Grp /\ A e. K /\ B e. K ) -> ( A ( -g ` F ) B ) e. K ) |
| 23 | 20 7 8 22 | syl3anc | |- ( ph -> ( A ( -g ` F ) B ) e. K ) |
| 24 | 1 2 3 4 16 5 6 23 9 | lvecvs0or | |- ( ph -> ( ( ( A ( -g ` F ) B ) .x. X ) = .0. <-> ( ( A ( -g ` F ) B ) = ( 0g ` F ) \/ X = .0. ) ) ) |
| 25 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 26 | 1 2 3 4 25 21 18 7 8 9 | lmodsubdir | |- ( ph -> ( ( A ( -g ` F ) B ) .x. X ) = ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) ) |
| 27 | 26 | eqeq1d | |- ( ph -> ( ( ( A ( -g ` F ) B ) .x. X ) = .0. <-> ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) = .0. ) ) |
| 28 | 15 24 27 | 3bitr2rd | |- ( ph -> ( ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) = .0. <-> ( A ( -g ` F ) B ) = ( 0g ` F ) ) ) |
| 29 | 1 3 2 4 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ X e. V ) -> ( A .x. X ) e. V ) |
| 30 | 18 7 9 29 | syl3anc | |- ( ph -> ( A .x. X ) e. V ) |
| 31 | 1 3 2 4 | lmodvscl | |- ( ( W e. LMod /\ B e. K /\ X e. V ) -> ( B .x. X ) e. V ) |
| 32 | 18 8 9 31 | syl3anc | |- ( ph -> ( B .x. X ) e. V ) |
| 33 | 1 5 25 | lmodsubeq0 | |- ( ( W e. LMod /\ ( A .x. X ) e. V /\ ( B .x. X ) e. V ) -> ( ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) = .0. <-> ( A .x. X ) = ( B .x. X ) ) ) |
| 34 | 18 30 32 33 | syl3anc | |- ( ph -> ( ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) = .0. <-> ( A .x. X ) = ( B .x. X ) ) ) |
| 35 | 4 16 21 | grpsubeq0 | |- ( ( F e. Grp /\ A e. K /\ B e. K ) -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> A = B ) ) |
| 36 | 20 7 8 35 | syl3anc | |- ( ph -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> A = B ) ) |
| 37 | 28 34 36 | 3bitr3d | |- ( ph -> ( ( A .x. X ) = ( B .x. X ) <-> A = B ) ) |