This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. ( hvsubdistr2 analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodsubdir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodsubdir.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodsubdir.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodsubdir.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmodsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| lmodsubdir.s | ⊢ 𝑆 = ( -g ‘ 𝐹 ) | ||
| lmodsubdir.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lmodsubdir.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lmodsubdir.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| lmodsubdir.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | lmodsubdir | ⊢ ( 𝜑 → ( ( 𝐴 𝑆 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodsubdir.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lmodsubdir.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lmodsubdir.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lmodsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 6 | lmodsubdir.s | ⊢ 𝑆 = ( -g ‘ 𝐹 ) | |
| 7 | lmodsubdir.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 8 | lmodsubdir.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 9 | lmodsubdir.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 10 | lmodsubdir.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 11 | 3 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 12 | 7 11 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 13 | ringgrp | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 15 | eqid | ⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) | |
| 16 | 4 15 | grpinvcl | ⊢ ( ( 𝐹 ∈ Grp ∧ 𝐵 ∈ 𝐾 ) → ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ∈ 𝐾 ) |
| 17 | 14 9 16 | syl2anc | ⊢ ( 𝜑 → ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ∈ 𝐾 ) |
| 18 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 19 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 20 | 1 18 3 2 4 19 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) ) ) |
| 21 | 7 8 17 10 20 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) ) ) |
| 22 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 23 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 24 | 4 22 23 15 12 9 | ringnegl | ⊢ ( 𝜑 → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 ) = ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) |
| 25 | 24 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) ) |
| 26 | 4 23 | ringidcl | ⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 27 | 12 26 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 28 | 4 15 | grpinvcl | ⊢ ( ( 𝐹 ∈ Grp ∧ ( 1r ‘ 𝐹 ) ∈ 𝐾 ) → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 29 | 14 27 28 | syl2anc | ⊢ ( 𝜑 → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 30 | 1 3 2 4 22 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) |
| 31 | 7 29 9 10 30 | syl13anc | ⊢ ( 𝜑 → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) |
| 32 | 25 31 | eqtr3d | ⊢ ( 𝜑 → ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) ) |
| 34 | 21 33 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) ) |
| 35 | 4 19 15 6 | grpsubval | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 𝑆 𝐵 ) = ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) ) |
| 36 | 8 9 35 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 𝑆 𝐵 ) = ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) ) |
| 37 | 36 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 𝑆 𝐵 ) · 𝑋 ) = ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) · 𝑋 ) ) |
| 38 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 39 | 7 8 10 38 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 40 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
| 41 | 7 9 10 40 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
| 42 | 1 18 5 3 2 15 23 | lmodvsubval2 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐵 · 𝑋 ) ∈ 𝑉 ) → ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) ) |
| 43 | 7 39 41 42 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) ) |
| 44 | 34 37 43 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐴 𝑆 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |