This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a scalar product is zero, one of its factors must be zero. ( hvmul0or analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecmul0or.v | |- V = ( Base ` W ) |
|
| lvecmul0or.s | |- .x. = ( .s ` W ) |
||
| lvecmul0or.f | |- F = ( Scalar ` W ) |
||
| lvecmul0or.k | |- K = ( Base ` F ) |
||
| lvecmul0or.o | |- O = ( 0g ` F ) |
||
| lvecmul0or.z | |- .0. = ( 0g ` W ) |
||
| lvecmul0or.w | |- ( ph -> W e. LVec ) |
||
| lvecmul0or.a | |- ( ph -> A e. K ) |
||
| lvecmul0or.x | |- ( ph -> X e. V ) |
||
| Assertion | lvecvs0or | |- ( ph -> ( ( A .x. X ) = .0. <-> ( A = O \/ X = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmul0or.v | |- V = ( Base ` W ) |
|
| 2 | lvecmul0or.s | |- .x. = ( .s ` W ) |
|
| 3 | lvecmul0or.f | |- F = ( Scalar ` W ) |
|
| 4 | lvecmul0or.k | |- K = ( Base ` F ) |
|
| 5 | lvecmul0or.o | |- O = ( 0g ` F ) |
|
| 6 | lvecmul0or.z | |- .0. = ( 0g ` W ) |
|
| 7 | lvecmul0or.w | |- ( ph -> W e. LVec ) |
|
| 8 | lvecmul0or.a | |- ( ph -> A e. K ) |
|
| 9 | lvecmul0or.x | |- ( ph -> X e. V ) |
|
| 10 | df-ne | |- ( A =/= O <-> -. A = O ) |
|
| 11 | oveq2 | |- ( ( A .x. X ) = .0. -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) = ( ( ( invr ` F ) ` A ) .x. .0. ) ) |
|
| 12 | 11 | ad2antlr | |- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) = ( ( ( invr ` F ) ` A ) .x. .0. ) ) |
| 13 | 7 | adantr | |- ( ( ph /\ A =/= O ) -> W e. LVec ) |
| 14 | 3 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 15 | 13 14 | syl | |- ( ( ph /\ A =/= O ) -> F e. DivRing ) |
| 16 | 8 | adantr | |- ( ( ph /\ A =/= O ) -> A e. K ) |
| 17 | simpr | |- ( ( ph /\ A =/= O ) -> A =/= O ) |
|
| 18 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 19 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 20 | eqid | |- ( invr ` F ) = ( invr ` F ) |
|
| 21 | 4 5 18 19 20 | drnginvrl | |- ( ( F e. DivRing /\ A e. K /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
| 22 | 15 16 17 21 | syl3anc | |- ( ( ph /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
| 23 | 22 | oveq1d | |- ( ( ph /\ A =/= O ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( 1r ` F ) .x. X ) ) |
| 24 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 25 | 7 24 | syl | |- ( ph -> W e. LMod ) |
| 26 | 25 | adantr | |- ( ( ph /\ A =/= O ) -> W e. LMod ) |
| 27 | 4 5 20 | drnginvrcl | |- ( ( F e. DivRing /\ A e. K /\ A =/= O ) -> ( ( invr ` F ) ` A ) e. K ) |
| 28 | 15 16 17 27 | syl3anc | |- ( ( ph /\ A =/= O ) -> ( ( invr ` F ) ` A ) e. K ) |
| 29 | 9 | adantr | |- ( ( ph /\ A =/= O ) -> X e. V ) |
| 30 | 1 3 2 4 18 | lmodvsass | |- ( ( W e. LMod /\ ( ( ( invr ` F ) ` A ) e. K /\ A e. K /\ X e. V ) ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) |
| 31 | 26 28 16 29 30 | syl13anc | |- ( ( ph /\ A =/= O ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) |
| 32 | 1 3 2 19 | lmodvs1 | |- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
| 33 | 25 9 32 | syl2anc | |- ( ph -> ( ( 1r ` F ) .x. X ) = X ) |
| 34 | 33 | adantr | |- ( ( ph /\ A =/= O ) -> ( ( 1r ` F ) .x. X ) = X ) |
| 35 | 23 31 34 | 3eqtr3d | |- ( ( ph /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) = X ) |
| 36 | 35 | adantlr | |- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) = X ) |
| 37 | 25 | adantr | |- ( ( ph /\ ( A .x. X ) = .0. ) -> W e. LMod ) |
| 38 | 37 | adantr | |- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> W e. LMod ) |
| 39 | 28 | adantlr | |- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> ( ( invr ` F ) ` A ) e. K ) |
| 40 | 3 2 4 6 | lmodvs0 | |- ( ( W e. LMod /\ ( ( invr ` F ) ` A ) e. K ) -> ( ( ( invr ` F ) ` A ) .x. .0. ) = .0. ) |
| 41 | 38 39 40 | syl2anc | |- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) .x. .0. ) = .0. ) |
| 42 | 12 36 41 | 3eqtr3d | |- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> X = .0. ) |
| 43 | 42 | ex | |- ( ( ph /\ ( A .x. X ) = .0. ) -> ( A =/= O -> X = .0. ) ) |
| 44 | 10 43 | biimtrrid | |- ( ( ph /\ ( A .x. X ) = .0. ) -> ( -. A = O -> X = .0. ) ) |
| 45 | 44 | orrd | |- ( ( ph /\ ( A .x. X ) = .0. ) -> ( A = O \/ X = .0. ) ) |
| 46 | 45 | ex | |- ( ph -> ( ( A .x. X ) = .0. -> ( A = O \/ X = .0. ) ) ) |
| 47 | 1 3 2 5 6 | lmod0vs | |- ( ( W e. LMod /\ X e. V ) -> ( O .x. X ) = .0. ) |
| 48 | 25 9 47 | syl2anc | |- ( ph -> ( O .x. X ) = .0. ) |
| 49 | oveq1 | |- ( A = O -> ( A .x. X ) = ( O .x. X ) ) |
|
| 50 | 49 | eqeq1d | |- ( A = O -> ( ( A .x. X ) = .0. <-> ( O .x. X ) = .0. ) ) |
| 51 | 48 50 | syl5ibrcom | |- ( ph -> ( A = O -> ( A .x. X ) = .0. ) ) |
| 52 | 3 2 4 6 | lmodvs0 | |- ( ( W e. LMod /\ A e. K ) -> ( A .x. .0. ) = .0. ) |
| 53 | 25 8 52 | syl2anc | |- ( ph -> ( A .x. .0. ) = .0. ) |
| 54 | oveq2 | |- ( X = .0. -> ( A .x. X ) = ( A .x. .0. ) ) |
|
| 55 | 54 | eqeq1d | |- ( X = .0. -> ( ( A .x. X ) = .0. <-> ( A .x. .0. ) = .0. ) ) |
| 56 | 53 55 | syl5ibrcom | |- ( ph -> ( X = .0. -> ( A .x. X ) = .0. ) ) |
| 57 | 51 56 | jaod | |- ( ph -> ( ( A = O \/ X = .0. ) -> ( A .x. X ) = .0. ) ) |
| 58 | 46 57 | impbid | |- ( ph -> ( ( A .x. X ) = .0. <-> ( A = O \/ X = .0. ) ) ) |