This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltoddhalfle | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 2 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 3 | 2 | a1i | ⊢ ( 𝑛 ∈ ℤ → ( 1 / 2 ) ∈ ℝ ) |
| 4 | 1red | ⊢ ( 𝑛 ∈ ℤ → 1 ∈ ℝ ) | |
| 5 | zre | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) | |
| 6 | 3 4 5 | 3jca | ⊢ ( 𝑛 ∈ ℤ → ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 8 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 9 | axltadd | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 1 / 2 ) < 1 → ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) ) | |
| 10 | 7 8 9 | mpisyl | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) |
| 11 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 13 | 5 3 | readdcld | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) |
| 15 | peano2z | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 + 1 ) ∈ ℤ ) | |
| 16 | 15 | zred | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 + 1 ) ∈ ℝ ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 18 | lttr | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ∧ ( 𝑛 + 1 ) ∈ ℝ ) → ( ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ∧ ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) → 𝑀 < ( 𝑛 + 1 ) ) ) | |
| 19 | 12 14 17 18 | syl3anc | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ∧ ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) → 𝑀 < ( 𝑛 + 1 ) ) ) |
| 20 | 10 19 | mpan2d | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) → 𝑀 < ( 𝑛 + 1 ) ) ) |
| 21 | zleltp1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 ≤ 𝑛 ↔ 𝑀 < ( 𝑛 + 1 ) ) ) | |
| 22 | 21 | ancoms | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑛 ↔ 𝑀 < ( 𝑛 + 1 ) ) ) |
| 23 | 20 22 | sylibrd | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) → 𝑀 ≤ 𝑛 ) ) |
| 24 | halfgt0 | ⊢ 0 < ( 1 / 2 ) | |
| 25 | 3 5 | jca | ⊢ ( 𝑛 ∈ ℤ → ( ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 27 | ltaddpos | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 0 < ( 1 / 2 ) ↔ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 < ( 1 / 2 ) ↔ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 29 | 24 28 | mpbii | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) |
| 30 | 5 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
| 31 | lelttr | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) → 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) | |
| 32 | 12 30 14 31 | syl3anc | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) → 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 33 | 29 32 | mpan2d | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑛 → 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 34 | 23 33 | impbid | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ↔ 𝑀 ≤ 𝑛 ) ) |
| 35 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 36 | 1cnd | ⊢ ( 𝑛 ∈ ℤ → 1 ∈ ℂ ) | |
| 37 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 38 | 37 | a1i | ⊢ ( 𝑛 ∈ ℤ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 39 | muldivdir | ⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) | |
| 40 | 35 36 38 39 | syl3anc | ⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) |
| 41 | 40 | breq2d | ⊢ ( 𝑛 ∈ ℤ → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 43 | 2z | ⊢ 2 ∈ ℤ | |
| 44 | 43 | a1i | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
| 45 | id | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) | |
| 46 | 44 45 | zmulcld | ⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 47 | 46 | zcnd | ⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 48 | 47 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℂ ) |
| 49 | pncan1 | ⊢ ( ( 2 · 𝑛 ) ∈ ℂ → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) | |
| 50 | 48 49 | syl | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
| 51 | 50 | oveq1d | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 2 · 𝑛 ) / 2 ) ) |
| 52 | 2cnd | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℂ ) | |
| 53 | 2ne0 | ⊢ 2 ≠ 0 | |
| 54 | 53 | a1i | ⊢ ( 𝑛 ∈ ℤ → 2 ≠ 0 ) |
| 55 | 35 52 54 | divcan3d | ⊢ ( 𝑛 ∈ ℤ → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
| 56 | 55 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
| 57 | 51 56 | eqtrd | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = 𝑛 ) |
| 58 | 57 | breq2d | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ↔ 𝑀 ≤ 𝑛 ) ) |
| 59 | 34 42 58 | 3bitr4d | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ) |
| 60 | oveq1 | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑁 / 2 ) ) | |
| 61 | 60 | breq2d | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 < ( 𝑁 / 2 ) ) ) |
| 62 | oveq1 | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 𝑁 − 1 ) ) | |
| 63 | 62 | oveq1d | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 𝑁 − 1 ) / 2 ) ) |
| 64 | 63 | breq2d | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |
| 65 | 61 64 | bibi12d | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ↔ ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) |
| 66 | 59 65 | syl5ibcom | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) |
| 67 | 66 | ex | ⊢ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 68 | 67 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 69 | 68 | com23 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 70 | 69 | rexlimdva | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 71 | 1 70 | sylbid | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 72 | 71 | 3imp | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |