This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltoddhalfle | |- ( ( N e. ZZ /\ -. 2 || N /\ M e. ZZ ) -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 2 | halfre | |- ( 1 / 2 ) e. RR |
|
| 3 | 2 | a1i | |- ( n e. ZZ -> ( 1 / 2 ) e. RR ) |
| 4 | 1red | |- ( n e. ZZ -> 1 e. RR ) |
|
| 5 | zre | |- ( n e. ZZ -> n e. RR ) |
|
| 6 | 3 4 5 | 3jca | |- ( n e. ZZ -> ( ( 1 / 2 ) e. RR /\ 1 e. RR /\ n e. RR ) ) |
| 7 | 6 | adantr | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( 1 / 2 ) e. RR /\ 1 e. RR /\ n e. RR ) ) |
| 8 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 9 | axltadd | |- ( ( ( 1 / 2 ) e. RR /\ 1 e. RR /\ n e. RR ) -> ( ( 1 / 2 ) < 1 -> ( n + ( 1 / 2 ) ) < ( n + 1 ) ) ) |
|
| 10 | 7 8 9 | mpisyl | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( n + ( 1 / 2 ) ) < ( n + 1 ) ) |
| 11 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 12 | 11 | adantl | |- ( ( n e. ZZ /\ M e. ZZ ) -> M e. RR ) |
| 13 | 5 3 | readdcld | |- ( n e. ZZ -> ( n + ( 1 / 2 ) ) e. RR ) |
| 14 | 13 | adantr | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( n + ( 1 / 2 ) ) e. RR ) |
| 15 | peano2z | |- ( n e. ZZ -> ( n + 1 ) e. ZZ ) |
|
| 16 | 15 | zred | |- ( n e. ZZ -> ( n + 1 ) e. RR ) |
| 17 | 16 | adantr | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( n + 1 ) e. RR ) |
| 18 | lttr | |- ( ( M e. RR /\ ( n + ( 1 / 2 ) ) e. RR /\ ( n + 1 ) e. RR ) -> ( ( M < ( n + ( 1 / 2 ) ) /\ ( n + ( 1 / 2 ) ) < ( n + 1 ) ) -> M < ( n + 1 ) ) ) |
|
| 19 | 12 14 17 18 | syl3anc | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( M < ( n + ( 1 / 2 ) ) /\ ( n + ( 1 / 2 ) ) < ( n + 1 ) ) -> M < ( n + 1 ) ) ) |
| 20 | 10 19 | mpan2d | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( n + ( 1 / 2 ) ) -> M < ( n + 1 ) ) ) |
| 21 | zleltp1 | |- ( ( M e. ZZ /\ n e. ZZ ) -> ( M <_ n <-> M < ( n + 1 ) ) ) |
|
| 22 | 21 | ancoms | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( M <_ n <-> M < ( n + 1 ) ) ) |
| 23 | 20 22 | sylibrd | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( n + ( 1 / 2 ) ) -> M <_ n ) ) |
| 24 | halfgt0 | |- 0 < ( 1 / 2 ) |
|
| 25 | 3 5 | jca | |- ( n e. ZZ -> ( ( 1 / 2 ) e. RR /\ n e. RR ) ) |
| 26 | 25 | adantr | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( 1 / 2 ) e. RR /\ n e. RR ) ) |
| 27 | ltaddpos | |- ( ( ( 1 / 2 ) e. RR /\ n e. RR ) -> ( 0 < ( 1 / 2 ) <-> n < ( n + ( 1 / 2 ) ) ) ) |
|
| 28 | 26 27 | syl | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( 0 < ( 1 / 2 ) <-> n < ( n + ( 1 / 2 ) ) ) ) |
| 29 | 24 28 | mpbii | |- ( ( n e. ZZ /\ M e. ZZ ) -> n < ( n + ( 1 / 2 ) ) ) |
| 30 | 5 | adantr | |- ( ( n e. ZZ /\ M e. ZZ ) -> n e. RR ) |
| 31 | lelttr | |- ( ( M e. RR /\ n e. RR /\ ( n + ( 1 / 2 ) ) e. RR ) -> ( ( M <_ n /\ n < ( n + ( 1 / 2 ) ) ) -> M < ( n + ( 1 / 2 ) ) ) ) |
|
| 32 | 12 30 14 31 | syl3anc | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( M <_ n /\ n < ( n + ( 1 / 2 ) ) ) -> M < ( n + ( 1 / 2 ) ) ) ) |
| 33 | 29 32 | mpan2d | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( M <_ n -> M < ( n + ( 1 / 2 ) ) ) ) |
| 34 | 23 33 | impbid | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( n + ( 1 / 2 ) ) <-> M <_ n ) ) |
| 35 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 36 | 1cnd | |- ( n e. ZZ -> 1 e. CC ) |
|
| 37 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 38 | 37 | a1i | |- ( n e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 39 | muldivdir | |- ( ( n e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( n + ( 1 / 2 ) ) ) |
|
| 40 | 35 36 38 39 | syl3anc | |- ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( n + ( 1 / 2 ) ) ) |
| 41 | 40 | breq2d | |- ( n e. ZZ -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M < ( n + ( 1 / 2 ) ) ) ) |
| 42 | 41 | adantr | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M < ( n + ( 1 / 2 ) ) ) ) |
| 43 | 2z | |- 2 e. ZZ |
|
| 44 | 43 | a1i | |- ( n e. ZZ -> 2 e. ZZ ) |
| 45 | id | |- ( n e. ZZ -> n e. ZZ ) |
|
| 46 | 44 45 | zmulcld | |- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
| 47 | 46 | zcnd | |- ( n e. ZZ -> ( 2 x. n ) e. CC ) |
| 48 | 47 | adantr | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( 2 x. n ) e. CC ) |
| 49 | pncan1 | |- ( ( 2 x. n ) e. CC -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
|
| 50 | 48 49 | syl | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
| 51 | 50 | oveq1d | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = ( ( 2 x. n ) / 2 ) ) |
| 52 | 2cnd | |- ( n e. ZZ -> 2 e. CC ) |
|
| 53 | 2ne0 | |- 2 =/= 0 |
|
| 54 | 53 | a1i | |- ( n e. ZZ -> 2 =/= 0 ) |
| 55 | 35 52 54 | divcan3d | |- ( n e. ZZ -> ( ( 2 x. n ) / 2 ) = n ) |
| 56 | 55 | adantr | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( 2 x. n ) / 2 ) = n ) |
| 57 | 51 56 | eqtrd | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = n ) |
| 58 | 57 | breq2d | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) <-> M <_ n ) ) |
| 59 | 34 42 58 | 3bitr4d | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) ) |
| 60 | oveq1 | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( N / 2 ) ) |
|
| 61 | 60 | breq2d | |- ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M < ( N / 2 ) ) ) |
| 62 | oveq1 | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( N - 1 ) ) |
|
| 63 | 62 | oveq1d | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = ( ( N - 1 ) / 2 ) ) |
| 64 | 63 | breq2d | |- ( ( ( 2 x. n ) + 1 ) = N -> ( M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) |
| 65 | 61 64 | bibi12d | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) <-> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) |
| 66 | 59 65 | syl5ibcom | |- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) |
| 67 | 66 | ex | |- ( n e. ZZ -> ( M e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
| 68 | 67 | adantl | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( M e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
| 69 | 68 | com23 | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N -> ( M e. ZZ -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
| 70 | 69 | rexlimdva | |- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( M e. ZZ -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
| 71 | 1 70 | sylbid | |- ( N e. ZZ -> ( -. 2 || N -> ( M e. ZZ -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
| 72 | 71 | 3imp | |- ( ( N e. ZZ /\ -. 2 || N /\ M e. ZZ ) -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) |