This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | halfleoddlt | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 2 | 0xr | ⊢ 0 ∈ ℝ* | |
| 3 | 1xr | ⊢ 1 ∈ ℝ* | |
| 4 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 5 | 4 | rexri | ⊢ ( 1 / 2 ) ∈ ℝ* |
| 6 | 2 3 5 | 3pm3.2i | ⊢ ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( 1 / 2 ) ∈ ℝ* ) |
| 7 | halfgt0 | ⊢ 0 < ( 1 / 2 ) | |
| 8 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 9 | 7 8 | pm3.2i | ⊢ ( 0 < ( 1 / 2 ) ∧ ( 1 / 2 ) < 1 ) |
| 10 | elioo3g | ⊢ ( ( 1 / 2 ) ∈ ( 0 (,) 1 ) ↔ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( 1 / 2 ) ∈ ℝ* ) ∧ ( 0 < ( 1 / 2 ) ∧ ( 1 / 2 ) < 1 ) ) ) | |
| 11 | 6 9 10 | mpbir2an | ⊢ ( 1 / 2 ) ∈ ( 0 (,) 1 ) |
| 12 | zltaddlt1le | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 1 / 2 ) ∈ ( 0 (,) 1 ) ) → ( ( 𝑛 + ( 1 / 2 ) ) < 𝑀 ↔ ( 𝑛 + ( 1 / 2 ) ) ≤ 𝑀 ) ) | |
| 13 | 11 12 | mp3an3 | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑛 + ( 1 / 2 ) ) < 𝑀 ↔ ( 𝑛 + ( 1 / 2 ) ) ≤ 𝑀 ) ) |
| 14 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑛 ∈ ℂ ) |
| 16 | 1cnd | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 1 ∈ ℂ ) | |
| 17 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 18 | 17 | a1i | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 19 | muldivdir | ⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) | |
| 20 | 15 16 18 19 | syl3anc | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) |
| 21 | 20 | breq1d | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) < 𝑀 ↔ ( 𝑛 + ( 1 / 2 ) ) < 𝑀 ) ) |
| 22 | 20 | breq1d | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ≤ 𝑀 ↔ ( 𝑛 + ( 1 / 2 ) ) ≤ 𝑀 ) ) |
| 23 | 13 21 22 | 3bitr4rd | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ≤ 𝑀 ↔ ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) < 𝑀 ) ) |
| 24 | oveq1 | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑁 / 2 ) ) | |
| 25 | 24 | breq1d | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) ≤ 𝑀 ) ) |
| 26 | 24 | breq1d | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) < 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) |
| 27 | 25 26 | bibi12d | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ≤ 𝑀 ↔ ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) < 𝑀 ) ↔ ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) |
| 28 | 23 27 | syl5ibcom | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) |
| 29 | 28 | ex | ⊢ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
| 31 | 30 | com23 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
| 32 | 31 | rexlimdva | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
| 33 | 1 32 | sylbid | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 → ( 𝑀 ∈ ℤ → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) ) ) |
| 34 | 33 | 3imp | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 / 2 ) ≤ 𝑀 ↔ ( 𝑁 / 2 ) < 𝑀 ) ) |