This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axltadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 <ℝ 𝐵 → ( 𝐶 + 𝐴 ) <ℝ ( 𝐶 + 𝐵 ) ) ) | |
| 2 | ltxrlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵 ) ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵 ) ) |
| 4 | readdcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐶 + 𝐴 ) ∈ ℝ ) | |
| 5 | readdcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) | |
| 6 | ltxrlt | ⊢ ( ( ( 𝐶 + 𝐴 ) ∈ ℝ ∧ ( 𝐶 + 𝐵 ) ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ↔ ( 𝐶 + 𝐴 ) <ℝ ( 𝐶 + 𝐵 ) ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ↔ ( 𝐶 + 𝐴 ) <ℝ ( 𝐶 + 𝐵 ) ) ) |
| 8 | 7 | 3impdi | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ↔ ( 𝐶 + 𝐴 ) <ℝ ( 𝐶 + 𝐵 ) ) ) |
| 9 | 8 | 3coml | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ↔ ( 𝐶 + 𝐴 ) <ℝ ( 𝐶 + 𝐵 ) ) ) |
| 10 | 1 3 9 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) |