This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singletons of collinear vectors have the same span. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansncol | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) = ( span ‘ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
| 3 | 2 | adantll | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
| 4 | ax-hvmulass | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) | |
| 5 | 4 | 3com13 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 7 | 6 | eqeq2d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ↔ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 8 | 7 | biimprd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → 𝑥 = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 9 | oveq1 | ⊢ ( 𝑧 = ( 𝑦 · 𝐵 ) → ( 𝑧 ·ℎ 𝐴 ) = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ) | |
| 10 | 9 | rspceeqv | ⊢ ( ( ( 𝑦 · 𝐵 ) ∈ ℂ ∧ 𝑥 = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) |
| 11 | 3 8 10 | syl6an | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 12 | 11 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 14 | divcl | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑧 / 𝐵 ) ∈ ℂ ) | |
| 15 | 14 | 3expb | ⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑧 / 𝐵 ) ∈ ℂ ) |
| 16 | 15 | adantlr | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑧 / 𝐵 ) ∈ ℂ ) |
| 17 | simprl | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 18 | simplr | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℋ ) | |
| 19 | ax-hvmulass | ⊢ ( ( ( 𝑧 / 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑧 / 𝐵 ) · 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) | |
| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝑧 / 𝐵 ) · 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 21 | divcan1 | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝑧 / 𝐵 ) · 𝐵 ) = 𝑧 ) | |
| 22 | 21 | 3expb | ⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑧 / 𝐵 ) · 𝐵 ) = 𝑧 ) |
| 23 | 22 | adantlr | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑧 / 𝐵 ) · 𝐵 ) = 𝑧 ) |
| 24 | 23 | oveq1d | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝑧 / 𝐵 ) · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑧 ·ℎ 𝐴 ) ) |
| 25 | 20 24 | eqtr3d | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) = ( 𝑧 ·ℎ 𝐴 ) ) |
| 26 | 25 | eqeq2d | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑥 = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ↔ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 27 | 26 | biimprd | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → 𝑥 = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 28 | oveq1 | ⊢ ( 𝑦 = ( 𝑧 / 𝐵 ) → ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) | |
| 29 | 28 | rspceeqv | ⊢ ( ( ( 𝑧 / 𝐵 ) ∈ ℂ ∧ 𝑥 = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 30 | 16 27 29 | syl6an | ⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 31 | 30 | exp43 | ⊢ ( 𝑧 ∈ ℂ → ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) ) ) ) |
| 32 | 31 | com4l | ⊢ ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 → ( 𝑧 ∈ ℂ → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) ) ) ) |
| 33 | 32 | 3imp | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑧 ∈ ℂ → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) ) |
| 34 | 33 | rexlimdv | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 35 | 13 34 | impbid | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 36 | hvmulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ ) | |
| 37 | 36 | ancoms | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ ) |
| 38 | elspansn | ⊢ ( ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 40 | 39 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 41 | elspansn | ⊢ ( 𝐴 ∈ ℋ → ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) | |
| 42 | 41 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 43 | 35 40 42 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ 𝑥 ∈ ( span ‘ { 𝐴 } ) ) ) |
| 44 | 43 | eqrdv | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) = ( span ‘ { 𝐴 } ) ) |