This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of a scalar product of a singleton. (Contributed by NM, 23-Apr-2014) (Proof shortened by Mario Carneiro, 4-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lspsn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lspsn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lspsn.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lspsn.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsnvsi | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lspsn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | lspsn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | lspsn.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | lspsn.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 7 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 8 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 9 | 8 | snssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → { 𝑋 } ⊆ 𝑉 ) |
| 10 | 3 6 5 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 | 7 9 10 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑅 ∈ 𝐾 ) | |
| 13 | 3 4 1 2 5 7 12 8 | ellspsni | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 14 | 6 5 7 11 13 | ellspsn5 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |