This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . In the first case of lsppratlem1 , since x e/ ( N(/) ) , also Y e. ( N{ x } ) , and since y e. ( N{ X , Y } ) C_ ( N{ X , x } ) and y e/ ( N{ x } ) , we have X e. ( N{ x , y } ) as desired. (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | ||
| lsppratlem1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lsppratlem1.x2 | ⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) | ||
| lsppratlem1.y2 | ⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) | ||
| lsppratlem3.x3 | ⊢ ( 𝜑 → 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lsppratlem3 | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 8 | lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
| 9 | lsppratlem1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 10 | lsppratlem1.x2 | ⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) | |
| 11 | lsppratlem1.y2 | ⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) | |
| 12 | lsppratlem3.x3 | ⊢ ( 𝜑 → 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 13 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 15 | 7 | snssd | ⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 16 | 1 3 | lspssv | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
| 17 | 14 15 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
| 18 | 17 12 | sseldd | ⊢ ( 𝜑 → 𝑥 ∈ 𝑉 ) |
| 19 | 18 | snssd | ⊢ ( 𝜑 → { 𝑥 } ⊆ 𝑉 ) |
| 20 | 8 | pssssd | ⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 21 | 6 | snssd | ⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 22 | 19 21 | unssd | ⊢ ( 𝜑 → ( { 𝑥 } ∪ { 𝑋 } ) ⊆ 𝑉 ) |
| 23 | 1 2 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( { 𝑥 } ∪ { 𝑋 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∈ 𝑆 ) |
| 24 | 14 22 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∈ 𝑆 ) |
| 25 | df-pr | ⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) | |
| 26 | 1 3 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( { 𝑥 } ∪ { 𝑋 } ) ⊆ 𝑉 ) → ( { 𝑥 } ∪ { 𝑋 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 27 | 14 22 26 | syl2anc | ⊢ ( 𝜑 → ( { 𝑥 } ∪ { 𝑋 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 28 | 27 | unssbd | ⊢ ( 𝜑 → { 𝑋 } ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 29 | ssun1 | ⊢ { 𝑥 } ⊆ ( { 𝑥 } ∪ { 𝑋 } ) | |
| 30 | 29 | a1i | ⊢ ( 𝜑 → { 𝑥 } ⊆ ( { 𝑥 } ∪ { 𝑋 } ) ) |
| 31 | 1 3 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( { 𝑥 } ∪ { 𝑋 } ) ⊆ 𝑉 ∧ { 𝑥 } ⊆ ( { 𝑥 } ∪ { 𝑋 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 32 | 14 22 30 31 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 33 | 0ss | ⊢ ∅ ⊆ 𝑉 | |
| 34 | 33 | a1i | ⊢ ( 𝜑 → ∅ ⊆ 𝑉 ) |
| 35 | uncom | ⊢ ( ∅ ∪ { 𝑌 } ) = ( { 𝑌 } ∪ ∅ ) | |
| 36 | un0 | ⊢ ( { 𝑌 } ∪ ∅ ) = { 𝑌 } | |
| 37 | 35 36 | eqtri | ⊢ ( ∅ ∪ { 𝑌 } ) = { 𝑌 } |
| 38 | 37 | fveq2i | ⊢ ( 𝑁 ‘ ( ∅ ∪ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑌 } ) |
| 39 | 12 38 | eleqtrrdi | ⊢ ( 𝜑 → 𝑥 ∈ ( 𝑁 ‘ ( ∅ ∪ { 𝑌 } ) ) ) |
| 40 | 10 | eldifbd | ⊢ ( 𝜑 → ¬ 𝑥 ∈ { 0 } ) |
| 41 | 9 3 | lsp0 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ ∅ ) = { 0 } ) |
| 42 | 14 41 | syl | ⊢ ( 𝜑 → ( 𝑁 ‘ ∅ ) = { 0 } ) |
| 43 | 40 42 | neleqtrrd | ⊢ ( 𝜑 → ¬ 𝑥 ∈ ( 𝑁 ‘ ∅ ) ) |
| 44 | 39 43 | eldifd | ⊢ ( 𝜑 → 𝑥 ∈ ( ( 𝑁 ‘ ( ∅ ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ ∅ ) ) ) |
| 45 | 1 2 3 | lspsolv | ⊢ ( ( 𝑊 ∈ LVec ∧ ( ∅ ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ∈ ( ( 𝑁 ‘ ( ∅ ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ ∅ ) ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( ∅ ∪ { 𝑥 } ) ) ) |
| 46 | 4 34 7 44 45 | syl13anc | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ ( ∅ ∪ { 𝑥 } ) ) ) |
| 47 | uncom | ⊢ ( ∅ ∪ { 𝑥 } ) = ( { 𝑥 } ∪ ∅ ) | |
| 48 | un0 | ⊢ ( { 𝑥 } ∪ ∅ ) = { 𝑥 } | |
| 49 | 47 48 | eqtri | ⊢ ( ∅ ∪ { 𝑥 } ) = { 𝑥 } |
| 50 | 49 | fveq2i | ⊢ ( 𝑁 ‘ ( ∅ ∪ { 𝑥 } ) ) = ( 𝑁 ‘ { 𝑥 } ) |
| 51 | 46 50 | eleqtrdi | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑥 } ) ) |
| 52 | 32 51 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 53 | 52 | snssd | ⊢ ( 𝜑 → { 𝑌 } ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 54 | 28 53 | unssd | ⊢ ( 𝜑 → ( { 𝑋 } ∪ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 55 | 25 54 | eqsstrid | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 56 | 2 3 | lspssp | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∈ 𝑆 ∧ { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 57 | 14 24 55 56 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 58 | 20 57 | sstrd | ⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 59 | 58 | ssdifd | ⊢ ( 𝜑 → ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ⊆ ( ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 60 | 59 11 | sseldd | ⊢ ( 𝜑 → 𝑦 ∈ ( ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 61 | 1 2 3 | lspsolv | ⊢ ( ( 𝑊 ∈ LVec ∧ ( { 𝑥 } ⊆ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ ( ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑦 } ) ) ) |
| 62 | 4 19 6 60 61 | syl13anc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑦 } ) ) ) |
| 63 | df-pr | ⊢ { 𝑥 , 𝑦 } = ( { 𝑥 } ∪ { 𝑦 } ) | |
| 64 | 63 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) = ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑦 } ) ) |
| 65 | 62 64 | eleqtrrdi | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
| 66 | 1 2 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |
| 67 | 5 66 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
| 68 | 67 | ssdifssd | ⊢ ( 𝜑 → ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ⊆ 𝑉 ) |
| 69 | 68 11 | sseldd | ⊢ ( 𝜑 → 𝑦 ∈ 𝑉 ) |
| 70 | 18 69 | prssd | ⊢ ( 𝜑 → { 𝑥 , 𝑦 } ⊆ 𝑉 ) |
| 71 | snsspr1 | ⊢ { 𝑥 } ⊆ { 𝑥 , 𝑦 } | |
| 72 | 71 | a1i | ⊢ ( 𝜑 → { 𝑥 } ⊆ { 𝑥 , 𝑦 } ) |
| 73 | 1 3 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑥 , 𝑦 } ⊆ 𝑉 ∧ { 𝑥 } ⊆ { 𝑥 , 𝑦 } ) → ( 𝑁 ‘ { 𝑥 } ) ⊆ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
| 74 | 14 70 72 73 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑥 } ) ⊆ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
| 75 | 74 51 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
| 76 | 65 75 | jca | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) |